14 resultados para Cell phones - Educational aspects
em Indian Institute of Science - Bangalore - Índia
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.
Resumo:
Reaction of bismuth metal with WO$_3$ in the absence of oxygen yields interesting bronze-like phases. From analytical electron microscopy and X-ray photoelectron spectroscopy, the product phases are found to have the general composition Bi$_x$ WO$_3$ with bismuth in the 3+ state. Structural investigations made with high resolution electron micrscopy and cognate techniques reveal that when x < 0.02, a perovskite bronze is formed. When x $\geqslant$ 0.02, however, intergrowth tungsten bronzes (i.t.b.) containing varying widths of the WO$_3$ slab are formed, the lattice periodicity being in the range 2.3-5.1 nm in a direction perpendicular to the WO$_3$ slabs. Image-matching studies indicate that the bismuth atoms are in the tunnels of the hexagonal tungsten bronze (h.t.b.) strips and the h.t.b. strips always remain one-tunnel wide. Annealed samples show a satellite structure around the superlattice spots in the electron diffraction patterns, possibly owing to ordering of the bismuth atoms in the tunnels. The i.t.b. phases show recurrent intergrowths extending up to 100 nm in several crystals. The periodicity varies considerably within the same crystal wherever there is disordered intergrowth, but unit cell dimensions can be assigned from X-ray and electron diffraction patterns. The maximum value of x in the i.t.b. phases is ca. 0.07 and there is no evidence for the i.t.b. phase progressively giving way to the h.t.b. phase with increase in x. Hexagonal tungsten bronzes that contain bismuth with x up to 0.02 can be formed by starting from hexagonal WO$_3$, but the h.t.b. phase seems to be metastable. Optical, magnetic and electron transport properties of the i.t.b. phases have been measured and it appears that the electrons become itinerant when x > 0.05.
Resumo:
The emf of the galvanic cell, Pt, Ni + NiO/(CaO) ZrO2/MS + MSO4, Ir, Pt, where M is calcium, strontium, or barium, has been measured in the temperature range 850 to 1100 K. From these measurements the Gibbs’ energy changes for the oxidation of sulfides of alkaline earth metals to their respective sulfates have been calculated. The results are compared with available thermodynamic data in the literature. The agreement varies from ±2 kJ for the strontium system to ±20 kJ in the case of barium. Trends in the stabilities of alkaline earth sulfates are discussed in relation to the properties of the cationic species involved.
Resumo:
One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.
Resumo:
Meibomian cell carcinoma (MCC) is a malignant tumor of the meibomian glands located in the eyelids. No information exists on the cytogenctic and genetic aspects of MCC. There is no report on the gene expression profile of MCC. Thus there is a need, for both scientific and clinical reasons, to identify genes and pathways that are involved in the development and progression of MCC. We analyzed the gene expression profile of MCC by the microarray technique. Forty-four genes were upregulated and 149 genes were downregulated in MCC. Differential expression data were confirmed for 5 genes by semiquantitative RT-PCR in MCC tumors: GTF2H4, RBM12, UBE2D3, DDX17, and LZTS1. We found dysregulation of two major pathways in MCC: MAPK and JAK/STAT. Clusters of genes on chromosomes 1, 12, and 19 were dysregUlated in MCC. The data presented here will facilitate the identification of specific markers and therapeutic targets for the treatment of MCC patients. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 -> S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 -> S arrest is discussed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
Resumo:
The implementation of semiconductor circuits and systems in nano-technology makes it possible to achieve high speed, lower voltage level and smaller area. The unintended and undesirable result of this scaling is that it makes integrated circuits susceptible to soft errors normally caused by alpha particle or neutron hits. These events of radiation strike resulting into bit upsets referred to as single event upsets(SEU), become increasingly of concern for the reliable circuit operation in the field. Storage elements are worst hit by this phenomenon. As we further scale down, there is greater interest in reliability of the circuits and systems, apart from the performance, power and area aspects. In this paper we propose an improved 12T SEU tolerant SRAM cell design. The proposed SRAM cell is economical in terms of area overhead. It is easy to fabricate as compared to earlier designs. Simulation results show that the proposed cell is highly robust, as it does not flip even for a transient pulse with 62 times the Q(crit) of a standard 6T SRAM cell.
Resumo:
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
The primary purpose of the present work was to illustrate whether cell proliferation can be enhanced on electroactive bioceramic composite, when the cells are cultured in the presence of external electrical stimulation. The two different aspects of the influence of electric field (E-field) application toward stimulating the growth/proliferation of bone/connective tissue cells in vitro, (a) intermittent delivery of extremely low strength pulsed electrical stimulation (0.5-4V/cm, 400s DC pulse) and (b) surface charge generated by electrical poling (10kV/cm) of hydroxyapatite (HA)-BaTiO3 piezobiocomposite have been demonstrated. The experimental results establish that the cell growth can be enhanced using the new culture protocol of the intermittent delivery of electrical pulses within a narrow range of stimulation parameters. The optimal E-field strength for enhanced cellular response for mouse fibroblast L929 and osteogenic cells is in the range of 0.5-1V/cm. The MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay results suggested the increased viability of E-field treated cells over 7d in culture, implicating the positive impact of electrical pulses on proliferation behavior. The alizarin red assay results showed noticeable increase in Ca-deposition on the E-field treated samples in comparison to their untreated counterparts. The negatively charged surfaces of developed piezocomposite stimulated the cell growth in a statistically noticeable manner as compared with the uncharged or positively charged surfaces of similar composition.
Resumo:
The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.