9 resultados para Causal inference

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent axiomatic derivations of the maximum entropy principle from consistency conditions are critically examined. We show that proper application of consistency conditions alone allows a wider class of functionals, essentially of the form ∝ dx p(x)[p(x)/g(x)] s , for some real numbers, to be used for inductive inference and the commonly used form − ∝ dx p(x)ln[p(x)/g(x)] is only a particular case. The role of the prior densityg(x) is clarified. It is possible to regard it as a geometric factor, describing the coordinate system used and it does not represent information of the same kind as obtained by measurements on the system in the form of expectation values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces >= 90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give a method for probabilistic assignment to the Realistic Abductive Reasoning Model, The knowledge is assumed to be represented in the form of causal chaining, namely, hyper-bipartite network. Hyper-bipartite network is the most generalized form of knowledge representation for which, so far, there has been no way of assigning probability to the explanations, First, the inference mechanism using realistic abductive reasoning model is briefly described and then probability is assigned to each of the explanations so as to pick up the explanations in the decreasing order of plausibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satisfiability algorithms for propositional logic have improved enormously in recently years. This improvement increases the attractiveness of satisfiability methods for first-order logic that reduce the problem to a series of ground-level satisfiability problems. R. Jeroslow introduced a partial instantiation method of this kind that differs radically from the standard resolution-based methods. This paper lays the theoretical groundwork for an extension of his method that is general enough and efficient enough for general logic programming with indefinite clauses. In particular we improve Jeroslow's approach by (1) extending it to logic with functions, (2) accelerating it through the use of satisfiers, as introduced by Gallo and Rago, and (3) simplifying it to obtain further speedup. We provide a similar development for a "dual" partial instantiation approach defined by Hooker and suggest a primal-dual strategy. We prove correctness of the primal and dual algorithms for full first-order logic with functions, as well as termination on unsatisfiable formulas. We also report some preliminary computational results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the inference for the component and system lifetime distribution of a k-unit parallel system with independent components based on system data. The components are assumed to have identical Weibull distribution. We obtain the maximum likelihood estimates of the unknown parameters based on system data. The Fisher information matrix has been derived. We propose -expectation tolerance interval and -content -level tolerance interval for the life distribution of the system. Performance of the estimators and tolerance intervals is investigated via simulation study. A simulated dataset is analyzed for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 mu s coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.