72 resultados para Cataclysmic variable stars.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The correlation between magnetic and transport properties is examined by studying poly(4,4'-methylenedianiline)(PMDA) salts and their bases using EPR and conductivity measurements. Five different PMDA salts (doped polymers)were prepared by chemical polymerization of 4,4'-methylenedianiline using different protonic acids. The PMDA bases were obtained by dedoping the salts using ammonium hydroxide. Ambient temperature electrical conductivity measurements show evidence for the doped PMDA system to be highly disordered. The EPR spectra of the samples were recorded in the range 20-200 "C, and the results were analyzed on the basis of the polaron-bipolaron model, which is typical of nondegenerate systems. Both PMDA salts and their bases consist of self-trapped, highly mobile polarons or radical cations. EPR studies on PMDA salts show evidence for the presence of thermally activated and temperature independent (or Pauli type) paramagnetism while the bases show thermally activated, Pauli and Curie-Weiss types of paramagnetism. The paramagnetism arises due to polarons.It is proposed that charge transport takes place through both polarons and bipolarons.
Resumo:
Many wireless applications demand a fast mechanism to detect the packet from a node with the highest priority ("best node") only, while packets from nodes with lower priority are irrelevant. In this paper, we introduce an extremely fast contention-based multiple access algorithm that selects the best node and requires only local information of the priorities of the nodes. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities onto the receive power. It is based on a key result that shows that mapping onto a set of discrete receive power levels is optimal, when the power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture, idle channel, or collision. We also show how reliable information regarding the total received power at the receiver can be used to improve the algorithm by enhancing the feedback mechanism. The algorithm detects the packet from the best node in 1.5 to 2.1 slots, which is considerably lower than the 2.43 slot average achieved by the best algorithm known to date.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
Bond graph is an apt modelling tool for any system working across multiple energy domains. Power electronics system modelling is usually the study of the interplay of energy in the domains of electrical, mechanical, magnetic and thermal. The usefulness of bond graph modelling in power electronic field has been realised by researchers. Consequently in the last couple of decades, there has been a steadily increasing effort in developing simulation tools for bond graph modelling that are specially suited for power electronic study. For modelling rotating magnetic fields in electromagnetic machine models, a support for vector variables is essential. Unfortunately, all bond graph simulation tools presently provide support only for scalar variables. We propose an approach to provide complex variable and vector support to bond graph such that it will enable modelling of polyphase electromagnetic and spatial vector systems. We also introduced a rotary gyrator element and use it along with the switched junction for developing the complex/vector variable's toolbox. This approach is implemented by developing a complex S-function tool box in Simulink inside a MATLAB environment This choice has been made so as to synthesise the speed of S-function, the user friendliness of Simulink and the popularity of MATLAB.
Resumo:
Aircraft pursuit-evasion encounters in a plane with variable speeds are analysed as a differential game. An engagement-dependent coordinate system confers open-loop optimality on the game. Each aircraft's optimal motion can be represented by extremel trajectory maps which are independent of role, adversary and capture radius. These maps are used in two different ways to construct the feedback solution. Some examples are given to illustrate these features. The paper draws on earlier results and surveys several existing papers on the subject.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.
Resumo:
Abstract is not available.
Resumo:
Effects of large deformation and inelasticity are considered in formulating the behavior of columns of variable cross section subjected to an axial compressive load. Simple, approximate methods are used to obtain numerical results. The combined effect of the nonlinearities is shown to be of a hardening type for small column deflections
Resumo:
For the non-linear bending of cantilever beams of variable cross-section, the effect of large deformations, but with linear elasticity, is considered. The governing integral equation is solved by a numerical iterative procedure. Results for some typical cases are obtained and compared with some of those available in the literature.
Resumo:
Pursuit evasion in a plane is formulated with both players allowed to vary their speeds between fixed limits. A suitable choice of real-space coordinates confers open-loop optimality on the game. The solution in the small is described in terms of the individual players'' extremal trajectory maps (ETM). Each map is independent of role, adversary, and capture radius. An ETM depicts the actual real-space trajectories. A template method of generating constant control arcs is described. Examples of ETM for an aircraft flying at a constant altitude with fixed and varying speeds are presented.