5 resultados para Carsten Holler
em Indian Institute of Science - Bangalore - Índia
Resumo:
In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (M phi) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient M phi revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected M phi. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli-or S. aureus-infected wild-type M phi, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX-/- NOS2(-/-) M phi further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX-/- NOS2(-/-) M phi cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.
Resumo:
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Resumo:
An electrochemical lead ion sensor has been developed by modification of carbon paste electrode (CPE) using polypyrrole functionalized with iminodiacetic acid (IDA-PPy) containing carboxyl group. The electrochemical response of Pb2+ ion on the IDA-PPy modified CPE has been evaluated and the controling parameters have been optimized using differential pulse anodic stripping voltammetry (DPASV). The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentrations in the range of 1 x 10(-6) to 5 x 10(-9) M and the lower detection limit of Pb2+ has been found to be 9.6 x 10(-9) M concentration. Other tested metal ions, namely Cu2+, Cd2+, Co2+, Hg2+, Ni2+ and Zn2+, do not exhibit any voltammetric stripping response below 1 x 10(-7) M concentration. However, the Pb2+ response is affected in the presence of molar equivalents or higher concentrations of Cu2+, Cd2+ and Co2+ ions in binary systems with Pb2+, consequent to their ability to bind with iminodiacetic acid, while Hg2+, Ni2+ and Zn2+ do not interfere at all. A good correlation has been observed between the lead concentrations as analyzed by DPASV using IDA-PPy modified CPE and atomic absorption spectrophotometry for a lead containing industrial effluent sample. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An amine functionalized polyaniline (AMPANI) derivative has been grafted onto exfoliated graphite oxide (EGO). The synthesis involved the in-situ chemical oxidative polymerization of functionalized aniline monomer in the presence of EGO with diaminobenzene acting as a bridging ligand to yield EGAMPANI. The synthesized compound was characterized by FT-IR and FT-Raman spectroscopy as well as thermogravimetric and X-ray diffraction analysis. The EGAMPANI was then used to modify a carbon paste electrode (CPE), which was applied for multi-elemental sensing of Pb2+, Cd2+ and Hg2+ ions using differential pulse anodic stripping voltammetty. The limits of detection achieved using the EGAMPANI modified CPE were 22 x 10(-6) M for Hg2+ ion, 1.2 x 10(-6) M for Cd2+ ion and 9.8 x 10(-7) M for Pb2+ ion. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.