9 resultados para Carotid artery plaque
em Indian Institute of Science - Bangalore - Índia
Resumo:
Purpose: Composition of the coronary artery plaque is known to have critical role in heart attack. While calcified plaque can easily be diagnosed by conventional CT, it fails to distinguish between fibrous and lipid rich plaques. In the present paper, the authors discuss the experimental techniques and obtain a numerical algorithm by which the electron density (rho(e)) and the effective atomic number (Z(eff)) can be obtained from the dual energy computed tomography (DECT) data. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques. Methods: For the purpose of calibration of the CT machine, the authors prepare aqueous samples whose calculated values of (rho(e), Z(eff)) lie in the range of (2.65 x 10(23) <= rho(e) <= 3.64 x 10(23)/cm(3)) and (6.80 <= Z(eff) <= 8.90). The authors fill the phantom with these known samples and experimentally determine HU(V-1) and HU(V-2), with V-1,V-2 = 100 and 140 kVp, for the same pixels and thus determine the coefficients of inversion that allow us to determine (rho(e), Z(eff)) from the DECT data. The HU(100) and HU(140) for the coronary artery plaque are obtained by filling the channel of the coronary artery with a viscous solution of methyl cellulose in water, containing 2% contrast. These (rho(e), Z(eff)) values of the coronary artery plaque are used for their characterization on the basis of theoretical models of atomic compositions of the plaque materials. These results are compared with histopathological report. Results: The authors find that the calibration gives Pc with an accuracy of 3.5% while Z(eff) is found within 1% of the actual value, the confidence being 95%. The HU(100) and HU(140) are found to be considerably different for the same plaque at the same position and there is a linear trend between these two HU values. It is noted that pure lipid type plaques are practically nonexistent, and microcalcification, as observed in histopathology, has to be taken into account to explain the nature of the observed (rho(e), Z(eff)) data. This also enables us to judge the composition of the plaque in terms of basic model which considers the plaque to be composed of fibres, lipids, and microcalcification. Conclusions: This simple and reliable method has the potential as an effective modality to investigate the composition of noncalcified coronary artery plaques and thus help in their characterization. In this inversion method, (rho(e), Z(eff)) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (rho(e), Z(eff)) does not interfere with each other and the nature of the plaque can be identified in terms of a three component model. (C) 2015 American Association of Physicists in Medicine.
Resumo:
Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.
Resumo:
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.
Resumo:
The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Abstract is not available.
Resumo:
Salmonella typhimurium mutants affecting the plaque morphology of P22 and other phages have been isolated. Using one such bacterial mutant phage mutants making turbid plaques have been isolated.
Resumo:
Some errors have been observed in the analytical expression for the resistance to flow (lambda R), and in the computation of shear stress distribution (tau R) in the analysis of Prawal Sinha and Chandan Singh (1). These errors have been rectified in the present analysis. Also, better values have been suggested for the couple stress parameter alpha for getting better results for lambda R and tau R.