69 resultados para Carbon steel electrodes

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox supercapacitors using polyaniline (PANI) coated. stainless-steel (SS) electrodes have been assembled and characterized. PANI has been deposited on SS substrate by a potentiodynamic method from an acidic electrolyte which contains aniline monomer. By employing stacks of electrodes, each with a geometrical area of 24 cm(2), in acidic perchlorate electrolyte, a capacitance value of about 450 F has been obtained over a long cycle-life. Characterization studies have been carried out by galvanostatic charge-discharge cycling of the capacitors singly, as well as in series and parallel configurations. Various electrical parameters have been evaluated. Use of the capacitors in parallel with a battery for pulse-power loads. and also working of a toy fan connected to the charged capacitors have been demonstrated. A specific capacitance value of about 1300 F g(-1) of PANI has been obtained at a discharge power of about 0.5 kW kg(-1). This value is several times higher than those reported in the literature for PANI and is, perhaps, the highest value known for a capacitor material. The inexpensive SS substrate and the high-capacitance PANI are favorable factors for commercial exploitation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrooxidation of methanol in sulphuric acid on carbon-supported electrodes containing Pt-Sn bimetal catalysts prepared by an in-situ route is reported, The catalysts have been characterized employing chemical analyses, XRD, and XANES data in conjunction with electrochemistry. This study suggests that the Sn content in Pt-Sn bimetals produces: (i) a charge transfer from Sn to Pt and (ii) an increase in the coverage of adsorbed methanolic residues with the Sn content. From the electrode-kinetics data, it is inferred that while the electrodes of (3:3) Pt-Sn/C catalyst involve a 2-electron rate-limiting step akin to Pt/C electrodes, it is shifted to only 1-electron on (3:2) Pt-Sn/C, (3:3) Pt-Sn/C, and (3:4) Pt-Sn/C electrodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

European accounts from the 17th century onwards have referred to the repute and manufacture of “wootz’, a traditional crucible steel made especially in parts of southern India in the former provinces of Golconda, Mysore and Salem. Pliny's Natural History mentions the import of iron and steel from the Seres which have been thought to refer to the ancient southern Indian kingdom of the Cheras. As yet the scale of excavations and surface surveys is too limited to link the literary accounts to archaeometallurgical evidence, although pioneering exploratory investigations have been made by scholars, especially on the pre-industrial production sites of Konasamudram and Gatihosahalli discussed in 18th-19th century European accounts. In 1991–2 during preliminary surveys of ancient base metal mining sites, Srinivasan came across unreported dumps with crucible fragments at Mel-Siruvalur in Tamil Nadu, and Tintini and Machnur in Karnataka and she collected surface specimens from these sites as well as from the known site of Gatihosahalli. She was also given crucible fragments by the Tamil University, Tanjavur, from an excavated megalithic site at Kodumanal, dated to ca 2nd c. Bc, mentioned in Tamil Sangam literature (ca 3rd c. BC-3rd c. AD), and very near Karur, the ancient capital of the Sangam Cheras. Analyses of crucible fragments from the surface collection at Mel-Siruvalur showed several iron prills with a uniform pearlitic structure of high-carbon hypereutectoid steel (∼1–1.5% C) suggesting that the end product was uniformly a high-carbon steel of a structure consistent with those of high-carbon steels used successfully to experimentally replicate the watered steel patterns on ‘Damascus’ swords. Investigations indicate that the process was of carburisation of molten low carbon iron (m.p. 1400° C) in crucibles packed with carbonaceous matter. The fabric of crucibles from all the above mentioned sites appears similar. Preliminary investigations on these crucibles are thus reported to establish their relationship to crucible production of carbon steel and to thereby extend the known horizons of this technology further.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20 ng mL(-1) and 2 ng mL(-1) of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH 4.0 +/- 0.05.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal desorption spectroscopy and nanoindentation techniques were employed to elucidate the key differences in the hydrogen (H) charging methods (electrochemical versus gaseous) and their consequences on the mechanical response of a low carbon steel. While electrochemical charging enhances the hardness, gaseous charging reduces it. This contrasting behavior is rationalized in terms of the dependency of the strength on the absorbed amount of H during charging and the H concentration gradient in the specimen. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistivity imaging of a reconfigurable phantom with circular inhomogeneities is studied with a simple instrumentation and data acquisition system for Electrical Impedance Tomography. The reconfigurable phantom is developed with stainless steel electrodes and a sinusoidal current of constant amplitude is injected to the phantom boundary using opposite current injection protocol. Nylon and polypropylene cylinders with different cross sectional areas are kept inside the phantom and the boundary potential data are collected. The instrumentation and the data acquisition system with a DIP switch-based multiplexer board are used to inject a constant current of desired amplitude and frequency. Voltage data for the first eight current patterns (128 voltage data) are found to be sufficient to reconstruct the inhomogeneities and hence the acquisition time is reduced. Resistivity images are reconstructed from the boundary data for different inhomogeneity positions using EIDORS-2D. The results show that the shape and resistivity of the inhomogeneity as well as the background resistivity are successfully reconstructed from the potential data for single or double inhomogeneity phantoms. The resistivity images obtained from the single and double inhomogeneity phantom clearly indicate the inhomogeneity as the high resistive material. Contrast to noise ratio (CNR) and contrast recovery (CR) of the reconstructed images are found high for the inhomogeneities near all the electrodes arbitrarily chosen for the entire study. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction between the various species in slag and metal phase is usually mass transfer controlled. There have been continuous efforts to increase the reaction efficiency in slag-metal system, especially during decarburization of steel to produce the ultra low carbon steel (ULCS) in secondary steelmaking. It has been found that the surface reaction is a dominant factor in the final stage of decarburization. In the initial stage, the inner site reaction is major factor in the refining process. The mixing of bath affects the later reaction. However, the former reaction (surface reaction) is affected by the plume size area at the top of the metal surface. Therefore, a computational study has been made to understand the fluid dynamics of a new secondary steelmaking process called Revolutionary Degasser Activator (REDA) to study the bath mixing and plume area. REDA process has been considered as it is claimed that this process can reduce the carbon content in steel below 10ppm in a less time than the other existing processes such as RH and Tank degasser. This study shows that both bath mixing and plume area are increased in REDA process facilitating it to give the desired carbon content in less time. Qualitative comments are made on slag-metal reaction system based on this finding.