33 resultados para Canadian mining company

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns. We present the suite of tools and their application for analysis on whole human genome sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus Acidithicibacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (111) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear, aerospace, naval and missile industries place emphasis on materials with high structural integrity and reliable performance so as to meet certain stringent requirements in service. Strength is not the only criterion for selection. Properties such as fatigue resistance. impact toughness and fracture toughness are equally important. Electroslag refining (ESR) has been used widely and successfully over the years for improving the fatigue resistance, creep resistance, impact strength and fracture toughness of steels and alloy steels. But application of ESR to aluminium alloys is only a recent endeavour. A high-strength aircraft aluminium alloy IS: 7670 was therefore chosen for studies on the fatigue strength and the impact and fracture toughness. The results indicate that the fatigue resistance is considerably improved after refining and that the impact strength and fracture toughness of the refined alloy are comparable with that of the unrefined alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oscillating droplet method combined with electromagnetic levitation technique has been applied to determine the surface tensions of liquid nickel sulphur alloys as a function of the temperature and composition. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser, and the influence of magnetic field strength on the surface tension was considered. Furthermore, the applicability of Butler's equation and subregular solution model for the surface was shown to predict the surface tension of the systems containing the surface active elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In data mining, an important goal is to generate an abstraction of the data. Such an abstraction helps in reducing the space and search time requirements of the overall decision making process. Further, it is important that the abstraction is generated from the data with a small number of disk scans. We propose a novel data structure, pattern count tree (PC-tree), that can be built by scanning the database only once. PC-tree is a minimal size complete representation of the data and it can be used to represent dynamic databases with the help of knowledge that is either static or changing. We show that further compactness can be achieved by constructing the PC-tree on segmented patterns. We exploit the flexibility offered by rough sets to realize a rough PC-tree and use it for efficient and effective rough classification. To be consistent with the sizes of the branches of the PC-tree, we use upper and lower approximations of feature sets in a manner different from the conventional rough set theory. We conducted experiments using the proposed classification scheme on a large-scale hand-written digit data set. We use the experimental results to establish the efficacy of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.