61 resultados para Camera Obscura
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose a robust method for mosaicing of document images using features derived from connected components. Each connected component is described using the Angular Radial Tran. form (ART). To ensure geometric consistency during feature matching, the ART coefficients of a connected component are augmented with those of its two nearest neighbors. The proposed method addresses two critical issues often encountered in correspondence matching: (i) The stability of features and (ii) Robustness against false matches due to the multiple instances of characters in a document image. The use of connected components guarantees a stable localization across images. The augmented features ensure a successful correspondence matching even in the presence of multiple similar regions within the page. We illustrate the effectiveness of the proposed method on camera captured document images exhibiting large variations in viewpoint, illumination and scale.
Resumo:
A methodology for determining spacecraft attitude and autonomously calibrating star camera, both independent of each other, is presented in this paper. Unlike most of the attitude determination algorithms where attitude of the satellite depend on the camera calibrating parameters (like principal point offset, focal length etc.), the proposed method has the advantage of computing spacecraft attitude independently of camera calibrating parameters except lens distortion. In the proposed method both attitude estimation and star camera calibration is done together independent of each other by directly utilizing the star coordinate in image plane and corresponding star vector in inertial coordinate frame. Satellite attitude, camera principal point offset, focal length (in pixel), lens distortion coefficient are found by a simple two step method. In the first step, all parameters (except lens distortion) are estimated using a closed-form solution based on a distortion free camera model. In the second step lens distortion coefficient is estimated by linear least squares method using the solution of the first step to be used in the camera model that incorporates distortion. These steps are applied in an iterative manner to refine the estimated parameters. The whole procedure is faster enough for onboard implementation.
Who really ate the fruit? A novel approach to camera trapping for quantifying frugivory by ruminants
Resumo:
Tropical forest ruminants disperse several plants; yet, their effectiveness as seed dispersers is not systematically quantified. Information on frequency and extent of frugivory by ruminants is lacking. Techniques such as tree watches or fruit traps adapted from avian frugivore studies are not suitable to study terrestrial frugivores, and conventional camera traps provide little quantitative information. We used a novel time-delay camera-trap technique to assess the effectiveness of ruminants as seed dispersers for Phyllanthus emblica at Mudumalai, southern India. After being triggered by animal movement, cameras were programmed to take pictures every 2 min for the next 6 min, yielding a sequence of four pictures. Actual frugivores were differentiated from mere visitors, who did not consume fruit, by comparing the number of fruit remaining across the time-delay photograph sequence. During a 2-year study using this technique, we found that six terrestrial mammals consumed fallen P. emblica fruit. Additionally, seven mammals and one bird species visited fruiting trees but did not consume fallen fruit. Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica's most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%. Plants like P. emblica that are dispersed mainly by large mammalian frugivores are likely to have limited ability to migrate across fragmented landscapes in response to rapidly changing climates. We hope that more quantitative information on ruminant frugivory will become available with a wider application of our time-delay camera-trap technique.
Resumo:
In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.
Resumo:
Details of the design and operation of a Weissenberg camera suitable for x-ray investigations between -180°c and 200°c are presented. The camera employs a novel arrangement of spur and bevel gears to couple the goniometer spindle to the worm rod which controls the range of oscillation. The entire drive system and the goniometer assembly are mounted on a support which permits the insertion or removal of a cylindrical cassette from the gear-box side without disturbing the cooling assembly and the layer-line screen. The cassette can also be inserted from the opposite side. The specimen can be cooled either directly by a stream of liquid air or by the cold gas from its evaporation. Condensation of moisture at low temperatures is prevented by heating the layer-line tubes internally.
Resumo:
This paper proposes and compares four methods of binarzing text images captured using a camera mounted on a cell phone. The advantages and disadvantages(image clarity and computational complexity) of each method over the others are demonstrated through binarized results. The images are of VGA or lower resolution.
Resumo:
Calibration of the CCD camera of the 1-m telescope at the Vainu Bappu Observatory, Kavalur, to the BVR system is reported here based on the observations of stars in the 'dipper asterism' in the open cluster M 67 (NGC 2682). Transformations involving B and V have negligible colour terms, while those involving R are slightly colour dependent. The possibility of using scale-down R band fluxes to estimate the continuum flux at H-alpha is investigated by comparing the counts in R band with those through an interference filter centred at H-alpha. The scaling factor is found to remain constant over a wide range of colours. The sensitivity of the telescope-filter-CCD combination is estimated to be 2.0 per cent, 8.3 per cent and 9.7 per cent in B, V and R bands, respectively. The star F117 appears to be a small-amplitude (approximately 0.05 mag) variable.
Resumo:
We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.
Resumo:
This paper presents two methods of star camera calibration to determine camera calibrating parameters (like principal point, focal length etc) along with lens distortions (radial and decentering). First method works autonomously utilizing star coordinates in three consecutive image frames thus independent of star identification or biased attitude information. The parameters obtained in autonomous self-calibration technique helps to identify the imaged stars with the cataloged stars. Least Square based second method utilizes inertial star coordinates to determine satellite attitude and star camera parameters with lens radial distortion, both independent of each other. Camera parameters determined by the second method are more accurate than the first method of camera self calibration. Moreover, unlike most of the attitude determination algorithms where attitude of the satellite depend on the camera calibrating parameters, the second method has the advantage of computing spacecraft attitude independent of camera calibrating parameters except lens distortions (radial). Finally Kalman filter based sequential estimation scheme is employed to filter out the noise of the LS based estimation.
Resumo:
In this paper, sensing coverage by wireless camera-embedded sensor networks (WCSNs), a class of directional sensors is studied. The proposed work facilitates the autonomous tuning of orientation parameters and displacement of camera-sensor nodes in the bounded field of interest (FoI), where the network coverage in terms of every point in the FoI is important. The proposed work is first of its kind to study the problem of maximizing coverage of randomly deployed mobile WCSNs which exploits their mobility. We propose an algorithm uncovered region exploration algorithm (UREA-CS) that can be executed in centralized and distributed modes. Further, the work is extended for two special scenarios: 1) to suit autonomous combing operations after initial random WCSN deployments and 2) to improve the network coverage with occlusions in the FoI. The extensive simulation results show that the performance of UREA-CS is consistent, robust, and versatile to achieve maximum coverage, both in centralized and distributed modes. The centralized and distributed modes are further analyzed with respect to the computational and communicational overheads.
Resumo:
In this paper we present a depth-guided photometric 3D reconstruction method that works solely with a depth camera like the Kinect. Existing methods that fuse depth with normal estimates use an external RGB camera to obtain photometric information and treat the depth camera as a black box that provides a low quality depth estimate. Our contribution to such methods are two fold. Firstly, instead of using an extra RGB camera, we use the infra-red (IR) camera of the depth camera system itself to directly obtain high resolution photometric information. We believe that ours is the first method to use an IR depth camera system in this manner. Secondly, photometric methods applied to complex objects result in numerous holes in the reconstructed surface due to shadows and self-occlusions. To mitigate this problem, we develop a simple and effective multiview reconstruction approach that fuses depth and normal information from multiple viewpoints to build a complete, consistent and accurate 3D surface representation. We demonstrate the efficacy of our method to generate high quality 3D surface reconstructions for some complex 3D figurines.
Resumo:
The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.
Resumo:
Digital holography is the direct recording of holograms using a CCD camera and is an alternative to the use of a film or a plate. In this communication in-line digital holographic microscopy has been explored for its application in particle imaging in 3D. Holograms of particles of about 10 mu m size have been digitally reconstructed. Digital focusing was done to image the particles in different planes along the depth of focus. Digital holographic particle imaging results were compared with conventional optical microscope imaging. A methodology for dynamic analysis of microparticles in 3D using in-line digital holography has been proposed.