82 resultados para Calculation of citation metric
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper we report the analysis of dc breakdown tests on mixtures of CC12F2, SF6, C-C4F8, 2-C4F8, N2, C02, CF4, CHF3, and 1,1,1-CH3CF3 gases on the basis of the NKH formula Vmix=k(pd)aNbUC developed by us earlier for the binary mixtures of SF6 with air, N2, N20, and CO2. It is shown that while a and c have the values 0.915 and 0.850 respectively as earlier, k and b depend on the component gases. There is a good agreement between the calculated values on the basis of the formula and measured values reported in the literature.
Resumo:
In this paper we report the analysis of dc breakdown tests on mixtures of CC12F2, SF6, C-C4F8, 2-C4F8, N2, C02, CF4, CHF3, and 1,1,1-CH3CF3 gases on the basis of the NKH formula Vmix=k(pd)aNbUC developed by us earlier for the binary mixtures of SF6 with air, N2, N20, and CO2. It is shown that while a and c have the values 0.915 and 0.850 respectively as earlier, k and b depend on the component gases. There is a good agreement between the calculated values on the basis of the formula and measured values reported in the literature.
Resumo:
A simple formula is developed to predict the sparking potentials of SF6 and SF6-gas mixture in uniform and non-uniform fields. The formula has been shown to be valid over a very wide range from 1 to 1800 kPa·cm of pressure and electrode gap separation for mixtures containing 5 to 100% SF6. The calculated values are found to be in good agreement with the previously reported measurements in the literature. The formula should aid design engineers in estimating electrode-spacings and clearances in power apparatus and systems.
Resumo:
Coulomb interaction strengths (Udd and Uff) have been calculated from Hartree-Fock-Slater atomic calculations for 3d transition and 5f actinide elements, respectively. By decomposing the different contributions to the response (screening) to the 3d charge fluctuation, we show that a substantial reduction in Udd arises due to the relaxation of the 3d charge distribution itself. This, combined with the screening due to the response of the 4s charge density, is shown to provide a very compact screening charge comparable to the metallic case, explaining the success of the atomic calculations for estimating U even in the metals. A pronounced dependence of Udd (or Uff) on the number of electrons nd (nf) or the electronic configuration is also shown here.
Resumo:
Shell model calculation of defect energies in alkali halides have been carried out using the ion-dependent, crystal-independent potential parameters of Sangster and Atwood (1978). Results indicate that appreciable differences exist between barrier heights for migration of cations and anions. While barrier heights for cations are generally lower than for anions in alkali halides of NaCl structure, the opposite is true in alkali halides of CsCl structure.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
A 4 A electron-density map of Pf1 filamentous bacterial virus has been calculated from x-ray fiber diffraction data by using the maximum-entropy method. This method produces a map that is free of features due to noise in the data and enables incomplete isomorphous-derivative phase information to be supplemented by information about the nature of the solution. The map shows gently curved (banana-shaped) rods of density about 70 A long, oriented roughly parallel to the virion axis but slewing by about 1/6th turn while running from a radius of 28 A to one of 13 A. Within these rods, there is a helical periodicity with a pitch of 5 to 6 A. We interpret these rods to be the helical subunits of the virion. The position of strongly diffracted intensity on the x-ray fiber pattern shows that the basic helix of the virion is right handed and that neighboring nearly parallel protein helices cross one another in an unusual negative sense.
Resumo:
The pinning energy due to the elastic interaction of a semicoherent Y2BaCuO5 precipitate with the YBa2Cu3O7 matrix is computed. This is achieved by setting up dislocation arrays at the interface. The elastic stresses generated by such arrays are integrated over a fluxoid volume to obtain the energy. It is seen that this elastic interaction energy makes an additive contribution to the total J(c) value.
Resumo:
Although the recently proposed single-implicit-equation-based input voltage equations (IVEs) for the independent double-gate (IDG) MOSFET promise faster computation time than the earlier proposed coupled-equations-based IVEs, it is not clear how those equations could be solved inside a circuit simulator as the conventional Newton-Raphson (NR)-based root finding method will not always converge due to the presence of discontinuity at the G-zero point (GZP) and nonremovable singularities in the trigonometric IVE. In this paper, we propose a unique algorithm to solve those IVEs, which combines the Ridders algorithm with the NR-based technique in order to provide assured convergence for any bias conditions. Studying the IDG MOSFET operation carefully, we apply an optimized initial guess to the NR component and a minimized solution space to the Ridders component in order to achieve rapid convergence, which is very important for circuit simulation. To reduce the computation budget further, we propose a new closed-form solution of the IVEs in the near vicinity of the GZP. The proposed algorithm is tested with different device parameters in the extended range of bias conditions and successfully implemented in a commercial circuit simulator through its Verilog-A interface.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
The sonic boom at a large distance from its source consists of a leading shock, a trailing shock and a one parameter family of nonlinear wavefronts in between these shocks. A new ray theoretical method using a shock ray theory and a weakly nonlinear lay theory has been used to obtain the shock fronts and wavefronts respectively, for a maneuvering aerofoil in a homogeneous medium. This method introduces a one parameter family of Cauchy problems to calculate the shock and wave fronts emerging from the surface of the aerofoil. These problems are solved numerically to obtain the leading shock front and the nonlinear wavefronts emerging from the front portion of the aerofoil.
Resumo:
The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.
Resumo:
The flexibility of the water lattice in clathrate hydrates and guest-guest interactions has been shown in previous studies to significantly affect the values of the thermodynamic properties, such as chemical potentials and free energies. Here we describe methods for computing occupancies, chemical potentials, and free energies that account for the flexibility of water lattice and guest-guest interactions in the hydrate phase. The methods are validated for a wide variety of guest molecules, such as methane, ethane, carbon dioxide, and tetrahydrodfuran by comparing the predicted occupancy values of guest molecules with those obtained from isothermal isobaric semigrand Monte Carlo simulations. The proposed methods extend the van der Waals and Platteuw theory for clathrate hydrates, and the Langmuir constant is calculated based on the structure of the empty hydrate lattice. These methods in combination with development of advanced molecular models for water and guest molecules should lead to a more thermodynamically consistent theory for clathrate hydrates.
Resumo:
Methane and ethane are the simplest hydrocarbon molecules that can form clathrate hydrates. Previous studies have reported methods for calculating the three-phase equilibrium using Monte Carlo simulation methods in systems with a single component in the gas phase. Here we extend those methods to a binary gas mixture of methane and ethane. Methane-ethane system is an interesting one in that the pure components form sII clathrate hydrate whereas a binary mixture of the two can form the sII clathrate. The phase equilibria computed from Monte Carlo simulations show a good agreement with experimental data and are also able to predict the sI-sII structural transition in the clathrate hydrate. This is attributed to the quality of the TIP4P/Ice and TRaPPE models used in the simulations. (C) 2014 Elsevier B.V. All rights reserved.