258 resultados para Calcium Channel Blockers
em Indian Institute of Science - Bangalore - Índia
Resumo:
The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (>six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of −20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (−80 mV) than that required for evoking the delayed rectifier potassium current (−40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation.The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.
Resumo:
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of mu-conotoxin KIIIA, which was predicted originally to have a C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related mu-conotoxins. The two major isomers of synthetic mu-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(v)1.2 (K-d values of 5 and 230 nM, respectively). The solution structure for mu-KIIIA based on nuclear magnetic resonance data was recalculated with the C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the mu-KIIIA structure calculated with the incorrect C1-C9,C2-C15,C4-C16] disulfide pattern, with an alpha-helix spanning residues 7-12. In addition, the major folding isomers of mu-KIIIB, an N-terminally extended isoform of mu-KIIIA, identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as mu-KIIIA, and both blocked Na(v)1.2 (K-d values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic mu-KIIIA and mu-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of mu-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning.
Resumo:
Transparent glasses in CaO-Bi2O3-B2O3 system were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) and differential thermal analysis (DTA) carried out on the as-quenched samples confirmed their amorphous and glassy nature respectively. The surface crystallization behaviour of these glasses with and without ultrasonic surface treatment (UST) was monitored using XRD, optical microscopy and scanning electron microscopy (SEM). The volume fraction, depth of crystallization and the (001) orientation factor for the heat treated samples with and without UST were compared. The ultrasonically-treated samples on subsequent heat treatment were found to crystallize at lower temperatures associated with the highest degree of orientation factor (0.95) in contrast with those of non-UST samples. These surface crystallized glasses were found to exhibit nonlinear optical behaviour emitting green light (532 nm) when they were exposed to the infrared radiation (1064 nm) using Nd:YAG laser.
Resumo:
The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.
Resumo:
An open question within the Bienenstock-Cooper-Munro theory for synaptic modification concerns the specific mechanism that is responsible for regulating the sliding modification threshold (SMT). In this conductance-based modeling study on hippocampal pyramidal neurons, we quantitatively assessed the impact of seven ion channels (R- and T-type calcium, fast sodium, delayed rectifier, A-type, and small-conductance calcium-activated (SK) potassium and HCN) and two receptors (AMPAR and NMDAR) on a calcium-dependent Bienenstock-Cooper-Munro-like plasticity rule. Our analysis with R- and T-type calcium channels revealed that differences in their activation-inactivation profiles resulted in differential impacts on how they altered the SMT. Further, we found that the impact of SK channels on the SMT critically depended on the voltage dependence and kinetics of the calcium sources with which they interacted. Next, we considered interactions among all the seven channels and the two receptors through global sensitivity analysis on 11 model parameters. We constructed 20,000 models through uniform randomization of these parameters and found 360 valid models based on experimental constraints on their plasticity profiles. Analyzing these 360 models, we found that similar plasticity profiles could emerge with several nonunique parametric combinations and that parameters exhibited weak pairwise correlations. Finally, we used seven sets of virtual knock-outs on these 360 models and found that the impact of different channels on the SMT was variable and differential. These results suggest that there are several nonunique routes to regulate the SMT, and call for a systematic analysis of the variability and state dependence of the mechanisms underlying metaplasticity during behavior and pathology.
Resumo:
Key points The physiological metabolite, lactate and the two-pore domain leak potassium channel, TREK1 are known neuroprotectants against cerebral ischaemia. However, it is not known whether lactate interacts with TREK1 channel to provide neuroprotection. In this study we show that lactate increases TREK1 channel activity and hyperpolarizes CA1 stratum radiatum astrocytes in hippocampal slices. Lactate increases open probability and decreases longer close time of the human (h)TREK1 channel in a concentration dependent manner. Lactate interacts with histidine 328 (H328) in the carboxy terminal domain of hTREK1 channel to decrease its dwell time in the longer closed state. This interaction was dependent on the charge on H328. Lactate-insensitive mutant H328A hTREK1 showed pH sensitivity similar to wild-type hTREK1, indicating that the effect of lactate on hTREK1 is independent of pH change. AbstractA rise in lactate concentration and the leak potassium channel TREK1 have been independently associated with cerebral ischaemia. Recent literature suggests lactate to be neuroprotective and TREK1 knockout mice show an increased sensitivity to brain and spinal cord ischaemia; however, the connecting link between the two is missing. Therefore we hypothesized that lactate might interact with TREK1 channels. In the present study, we show that lactate at ischaemic concentrations (15-30mm) at pH7.4 increases TREK1 current in CA1 stratum radiatum astrocytes and causes membrane hyperpolarization. We confirm the intracellular action of lactate on TREK1 in hippocampal slices using monocarboxylate transporter blockers and at single channel level in cell-free inside-out membrane patches. The intracellular effect of lactate on TREK1 is specific since other monocarboxylates such as pyruvate and acetate at pH7.4 failed to increase TREK1 current. Deletion and point mutation experiments suggest that lactate decreases the longer close dwell time incrementally with increase in lactate concentration by interacting with the histidine residue at position 328 (H328) in the carboxy terminal domain of the TREK1 channel. The interaction of lactate with H328 is dependent on the charge on the histidine residue since isosteric mutation of H328 to glutamine did not show an increase in TREK1 channel activity with lactate. This is the first demonstration of a direct effect of lactate on ion channel activity. The action of lactate on the TREK1 channel signifies a separate neuroprotective mechanism in ischaemia since it was found to be independent of the effect of acidic pH on channel activity. Key points The physiological metabolite, lactate and the two-pore domain leak potassium channel, TREK1 are known neuroprotectants against cerebral ischaemia. However, it is not known whether lactate interacts with TREK1 channel to provide neuroprotection. In this study we show that lactate increases TREK1 channel activity and hyperpolarizes CA1 stratum radiatum astrocytes in hippocampal slices. Lactate increases open probability and decreases longer close time of the human (h)TREK1 channel in a concentration dependent manner. Lactate interacts with histidine 328 (H328) in the carboxy terminal domain of hTREK1 channel to decrease its dwell time in the longer closed state. This interaction was dependent on the charge on H328. Lactate-insensitive mutant H328A hTREK1 showed pH sensitivity similar to wild-type hTREK1, indicating that the effect of lactate on hTREK1 is independent of pH change.
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
An analytical and experimental study of the hydraulic jump in stilling basins with abrupt drop and sudden enlargement, called the spatial B-jump here, is carried out for finding the sequent depth ratio and resulting energy dissipation. The spatial B-jump studied has its toe downstream of the expansion section, and the stream lines at the toe are characterized by downward curvature. An expression is obtained for the sequent depth ratio based on the momentum equation with suitable assumptions for the extra pressure force term because of the abrupt drop in the bed and sudden enlargement in the basin width. Predictions compare favorably with experiments. It is shown that the spatial B-jump needs less tailwater depth, thereby enhancing the stability of the jump when compared either with spatial jump, which forms in sudden expanding channels, or with B-jump, which forms in a channel with an abrupt drop in bed. It is also shown that there is a significant increase in relative energy loss for the spatial B-jump compared to either the spatial jump or B-jump alone.
Resumo:
We have designed a four-helix protein that is expected to tetramerize in the membrane to form an ion channel with a structurally well defined pore. A synthetic peptide corresponding to the channel lining helix facilitates ion transport across liposomal membranes and largely helical in membranes. Detailed circular dichroism studies of the peptide in methanol, water and methanal-water mixtures reveal that it is helical in methanol, beta-structured in 97.5% water and a combination of these two structures at intermediate compositions of methanol and water. A fluorescence resonance energy transfer study of the peptide shows that the peptide is monomeric in methanol but undergoes extensive anti-parallel aggregation in aqueous solution.
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.