158 resultados para Calcium (cellular)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
Mitochondria isolated from the livers of rats administered with sodium meta-, ortho-, or polyvanadate, but not vanadyl sulphate, exhibited enhanced Ca2+ — stimulated respiration and uptake of calcium. These effects were shown also by mitochondria isolated from livers perfused with polyvanadate. The concentration of acid-soluble calcium decreased significantly in the mitochondrial fraction on vanadate treatment, while that in the cytosol showed a corresponding increase. Phenoxybenzamine, an antagonist to a-adrenergic receptors, effectively inhibited vanadate-induced Ca2+ mobilization, but surgical sympathectomy was without effect. This is the first demonstration of vanadate mimicking agr-adrenergic agonists in vivo.
Resumo:
H2O2, in addition to producing highly reactive molecules through hydroxyl radicals or peroxidase action, can exert a number of direct effects on cells, organelles and enzymes. The stimulations include glucose transport, glucose incorporation into glycogen, HMP shunt pathway, lipid synthesis, release of calcium from mitochondria and of arachidonate from phospholipids, poly ADP ribosylation, and insulin receptor tyrosine kinase and pyruvate dehydrogenase activities. The inactivations include glycolysis, lipolysis, reacylation of lysophospholipids, ATP synthesis, superoxide dismutase and protein kinase C. Damages to DNA and proteoglycan and general cytotoxicity possibly through oxygen radicals were also observed. A whole new range of effects will be opened by the finding that H2O2 can act as a signal transducer in oxidative stress by oxidizing a dithiol protein to disulphide form which then activates transcription of the stress inducible genes. Many of these direct effects seem to be obtained by dithiol-disulphide modification of proteins and their active sites, as part of adaptive responses in oxidative stress.
Resumo:
The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Measurement of the relation between polarisation and electric field for ferroelectric trissarcosine calcium chloride (TSCC) was made in the pressure range up to 6 kbar. The pressure dependence of the spontaneous polarisation and the coercive field were obtained, and the existence of a new pressure-induced phase and the paraelectric- ferroelectric-new phase triple point were found.
Resumo:
Experimentally measured average velocities through plateau borders of stationary cellular foam, when compared with those calculated with the assumption of rigid Plateau Border walls, show that the assumption of rigid walls severely underestimates the velocities. An analysis of the situation wherein plateau border walls have velocities, as decided by the surface viscosity of the system, is presented here. The plateau border is idealized as a pipe of equilateral triangular cross-section with vertices of the triangle having zero velocity. The pertinent form of Navier-Stoke's equations with inhomogeneous boundary conditions and its solution through a procedure of successive approximations is presented in dimensionless form. The solution reduces to the known solution of slow steady flow through a triangular pipe, when surface viscosity is infinite. Results indicate that the assumption of rigid plateau border walls is valid only when value of the inverse of dimensionless surface viscosity is less than 0.044. Beyond that the assumption severely underestimates the flow and the effect of nonrigidity of the wall must be considered.
Resumo:
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.
Resumo:
The association of nucleoside triphosphate molecules and calcium ions with purified particles of mycobacteriophage I3 has been documented. The content of nucleoside triphosphate has been determined to be 118 molecules per phage particle by equilibrium dialysis against labelled ATP or 148 molecules per phage particle by the direct determination of labelled nucleoside triphosphate.The concentration of bound Ca2+ exhibited a high degree of variation between different batches, which may be due to the nonspecific binding of Ca2+ by the virus particles. However, the tightly bound Ca2+ not removable by dialysis against calciumspecific chelating agent, showed a constant value of 2985 atoms/phage particle.
Resumo:
The calcium binding characteristics of antibiotic X-537A (lasalocid-A) in a lipophilic solvent, acetonitrile (CH3CN), have been studied using circular dichroism (CD) spectroscopy. The analysis of the data indicated that in this medium polar solvent, X-537A forms predominantly the charged complexes of stoichiometries 2:1 and 1:1, the relative amounts of the two being dependent on [Ca2+]. The conformation of the complexes, arrived at on the basis of the data, seem to indicate a rigid part encompassing Ca2+, liganded to 3 oxygens of the molecule, viz., the carbonyl, the substituted tetrahydrofuran ring and the substituted pyran ring oxygens (apart from possibly, the liganding provided by nitrogen atoms of the solvent molecules), and a flexible part consisting of the salicylic acid group of the molecule.
Resumo:
The dielectric measurement of ferroelectric trissarcosine calcium chloride (TSCC) was made under various pressures up to 6 kbar. A striking decrease in the peak value of the permittivity, epsilon r, at the transition temperature, Tc, was observed with increasing pressure. The value of Tc increases linearly with a pressure coefficient dTc/dp=11.1K kbar-1 at low pressures. This increase in Tc supports the suggestion that the ferroelectric transition is of the pure order-disorder type. It is suggested on the basis of the behaviour of epsilon r with pressure that the order of the ferroelectric transition changes from second to first order on application of pressure.
Resumo:
Complexation of valinomycin (VM) with the divalent cation Ca2+ in a lipophilic solvent, acetonitrile (CH3-CN), has been studied by using circular dichroism and proton and carbon- 13 nuclear magnetic resonance (‘H NMR and I3C NMR). From analyses of the spectral data, it is concluded that VM forms a 2:l (peptideion-peptide) sandwich complex with Ca2+, at low concentration of VM. At moderate conocentrations of the salt, in addition to the sandwich complex, an equimolar (1:l) complex different from those observed for potassium and sodium is also observed. At very large concentrations of the calcium salt, the data suggested a complex with a conformation similar to that of the free VM in polar solvents. Possible conformations for the sandwich and the equimolar VM-calcium complexes are proposed.
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
Studies on the conformational and binding characteristics of the ionophoric antibiotic X-537A (lasalocid-A)�calcium ion complexes have been carried out in deuteriated acetonitrile (CD3 CN) using proton and carbon-13 nuclear magnetic resonance (1 H and 13C n.m.r.) spectroscopy. Detailed analysis of the salt-induced chemical shifts at various X-537A to calcium concentration ratios indicated that X-537A forms charged complexes with calcium with 2 : 1 and 1 : 1 stoicheiometries. The conformational model for the complex based on the n.m.r. data showed that the calcium ion is preferentially bound to one end of the molecule, which is binding to three oxygen atoms, the other end (the salicylic acid part) being relatively free. In the 2 : 1 (sandwich) complex, the calcium ion is sandwiched between two X-537A molecules with three oxygen atoms binding to it from each molecule.