20 resultados para Cadastral updating
em Indian Institute of Science - Bangalore - Índia
Resumo:
The study extends the first order reliability method (FORM) and inverse FORM to update reliability models for existing, statically loaded structures based on measured responses. Solutions based on Bayes' theorem, Markov chain Monte Carlo simulations, and inverse reliability analysis are developed. The case of linear systems with Gaussian uncertainties and linear performance functions is shown to be exactly solvable. FORM and inverse reliability based methods are subsequently developed to deal with more general problems. The proposed procedures are implemented by combining Matlab based reliability modules with finite element models residing on the Abaqus software. Numerical illustrations on linear and nonlinear frames are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.
Resumo:
Abstract-To detect errors in decision tables one needs to decide whether a given set of constraints is feasible or not. This paper describes an algorithm to do so when the constraints are linear in variables that take only integer values. Decision tables with such constraints occur frequently in business data processing and in nonnumeric applications. The aim of the algorithm is to exploit. the abundance of very simple constraints that occur in typical decision table contexts. Essentially, the algorithm is a backtrack procedure where the the solution space is pruned by using the set of simple constrains. After some simplications, the simple constraints are captured in an acyclic directed graph with weighted edges. Further, only those partial vectors are considered from extension which can be extended to assignments that will at least satisfy the simple constraints. This is how pruning of the solution space is achieved. For every partial assignment considered, the graph representation of the simple constraints provides a lower bound for each variable which is not yet assigned a value. These lower bounds play a vital role in the algorithm and they are obtained in an efficient manner by updating older lower bounds. Our present algorithm also incorporates an idea by which it can be checked whether or not an (m - 2)-ary vector can be extended to a solution vector of m components, thereby backtracking is reduced by one component.
Resumo:
We consider the problem of tracking a maneuvering target in clutter. In such an environment, missed detections and false alarms make it impossible to decide, with certainty, the origin of received echoes. Processing radar returns in cluttered environments consists of three functions: 1) target detection and plot formation, 2) plot-to-track association, and 3) track updating. Two inadequacies of the present approaches are 1) Optimization of detection characteristics have not been considered and 2) features that can be used in the plot-to-track correlation process are restricted to a specific class. This paper presents a new approach to overcome these limitations. This approach facilitates tracking of a maneuvering target in clutter and improves tracking performance for weak targets.
Resumo:
The statistical minimum risk pattern recognition problem, when the classification costs are random variables of unknown statistics, is considered. Using medical diagnosis as a possible application, the problem of learning the optimal decision scheme is studied for a two-class twoaction case, as a first step. This reduces to the problem of learning the optimum threshold (for taking appropriate action) on the a posteriori probability of one class. A recursive procedure for updating an estimate of the threshold is proposed. The estimation procedure does not require the knowledge of actual class labels of the sample patterns in the design set. The adaptive scheme of using the present threshold estimate for taking action on the next sample is shown to converge, in probability, to the optimum. The results of a computer simulation study of three learning schemes demonstrate the theoretically predictable salient features of the adaptive scheme.
Resumo:
Multiaction learning automata which update their action probabilities on the basis of the responses they get from an environment are considered in this paper. The automata update the probabilities according to whether the environment responds with a reward or a penalty. Learning automata are said to possess ergodicity of the mean if the mean action probability is the state probability (or unconditional probability) of an ergodic Markov chain. In an earlier paper [11] we considered the problem of a two-action learning automaton being ergodic in the mean (EM). The family of such automata was characterized completely by proving the necessary and sufficient conditions for automata to be EM. In this paper, we generalize the results of [11] and obtain necessary and sufficient conditions for the multiaction learning automaton to be EM. These conditions involve two families of probability updating functions. It is shown that for the automaton to be EM the two families must be linearly dependent. The vector defining the linear dependence is the only vector parameter which controls the rate of convergence of the automaton. Further, the technique for reducing the variance of the limiting distribution is discussed. Just as in the two-action case, it is shown that the set of absolutely expedient schemes and the set of schemes which possess ergodicity of the mean are mutually disjoint.
Resumo:
The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.
Resumo:
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.
Resumo:
A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement teaming system. The internal state vector of each learning automaton is updated using an algorithm consisting of a gradient following term and a random perturbation term. It is shown that the algorithm weakly converges to a solution of the Langevin equation implying that the algorithm globally maximizes an appropriate function. The algorithm is decentralized, and the units do not have any information exchange during updating. Simulation results on common payoff games and pattern recognition problems show that reasonable rates of convergence can be obtained.
Resumo:
The INFORMATION SYSTEM with user friendly GUI’s (Graphical user Interface) is developed to maintain the flora data and generate reports for Sharavathi River Basin. The database consists of the information related to trees, herbs, shrubs and climbers. The data is based on the primary field survey and the information available in flora of Shimoga, Karnataka and Hassan flora. User friendly query options based on dichotomous keys are provided to help user to retrieve the data while data entry options aid in updating and editing the database at family, genus and species levels.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.