196 resultados para CYCLIC PEROXIDES
em Indian Institute of Science - Bangalore - Índia
Resumo:
Five stereochemically constrained analogs of the chemotactic tripeptide incorporating 1-aminocycloalkane-1-carboxylic acid (Ac(n)c) and alpha,alpha-dialkylglycines (Deg, diethylglycine; Dpg, n,n-dipropylglycine and Dbg, n,n-dibutylglycine) at position 2 have been synthesized. NMR studies of peptides For-Met-Xxx-Phe-OMe (Xxx = Ac(7)c, I; Ac(8)c, II; Deg, III; Dpg, IV and Dbg, V; For, formyl) establish that peptides with cycloalkyl residues, I and II, adopt folded beta-turn conformations in CDCl3 and (CD3)(2)SO. In contrast, analogs with linear alkyl sidechains, III-V, favour fully extended (C-5) conformations in solution. Peptides I-V exhibit high activity in inducing beta-glucosaminidase release from rabbit neutrophils, with ED(50) values ranging from 1.4-8.0 x 10(-11)M. In human neutrophils the Dxg peptides III-V have ED(50) values ranging from 2.3 x 10(-8) to 5.9 x 10(-10) M, with the activity order being V > IV > III. While peptides I-IV are less active than the parent. For-Met-Leu-Phe-OH, in stimulating histamine release from human basophils, the Dbg peptide V is appreciably more potent, suggesting its potential utility as a probe for formyl peptide receptors.
Resumo:
This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.
Resumo:
Luminescence has been detected in cyclic tetrapeptide disulfides containing only nonaromatic residues. Excitation of the S-S- n-cr transition between 280 and 290 nm leads to.ernission in the region 300-340 nm. The position and intensity of the emission band depends on the stereochemistry of the peptide and polarity of the solvent. Quantum yields ranging from 0.002 to 0.026 have been determined. Disulfide luminescence is quenched by oxygen and enhanced in solutions saturated with nitrogen. Contributions from disulfide linkages should be considered, when analysing the emission spectra of proteins, lacking tryptophan but having a high cystine content.
Resumo:
Current-potential relationships are derived for small-amplitude periodic inputs for linear electrochemical systems using a Fourier synthesis procedure. Specific results have been obtained for a triangular potential waveform for two simple model systems.
Resumo:
The conformational analysis of the synthetic peptide Boc-Cys-Pro-Val-Cys-NHMe has been carried out, as a model for small disulfide loops, in biologically active polypeptides. 'H NMR studies (270 MHz) establish that the Val(3) and Cys(4) NH groups are solvent shielded, while 13C studies establish an all-trans peptide backbone. Circular dichroism and Raman spectroscopy provide evidence for a right-handed twist of the disulfide bond. Analysis of the vicinal (JaB)c oupling constants for the two Cys residues establishes that XI - *60° for Cys(4), while some flexibility is suggested at Cys( 1). Conformational energy calculations, imposing intramolecular hydrogen bonding constraints, favor a P-turn (type I) structure with Pro(2)-Va1(3) as the corner residues. Theoretical and spectroscopic results are consistent with the presence of a transannular 4 - 1 hydrogen bond between Cys( 1) CO and Cys(4) NH groups, with the Val NH being sterically shielded from the solvent environment.
Resumo:
The solution and solid-state conformations of the peptide disulfide Boc-Cys-Pro-Aib-Cys-NHMe have been determined by NMR spectroscopy and X-ray diffraction. The Cys(4) and methylamide NH groups are solvent shielded in CDCI3 and (CD,),SO, suggesting their involvement in intramolecular hydrogen bonding. On the basis of known stereochemical preferences of Pro and Aib residues, a consecutive @-turn structure is favored in solution. X-ray diffraction analysis reveals a highly folded 310 helical conformation for the peptide, with the S-S bridge lying approximately parallel to the helix axis, linking residues 1 and 4. The backbone conformational angles are Cys(1) 4 = -121.1', $ = 65.6"; Pro(2) 4 = -58.9', 4 = -34.0'; Aib(3) 4 = -61.8', $ = -17.9'; Cys(4) 4 = -70.5', $ = -18.6'. Two intramolecular hydrogen bonds are observed between Cys(1) CO--HN Cys(4) and Pro(2) CO--HNMe. The disulfide bond has a right-handed chirality, with a dihedral angle (xss) of 82'.
Resumo:
The basic cyclic hexapeptide conformations which accommodate hydrogen bonded β and γ turns in the backbone have been worked out using stereochemical criteria and energy minimization procedures. It was found that cyclic hexapeptides can be made up of all possible combinations of 4 ± 1 hydrogen bonded types I, I', II and II' β turns, giving rise to symmetric conformations having twofold and inversion symmetries as well as nonsymmetric structures. Conformations having exclusive features of 3 ± 1 hydrogen bonded γ turns were found to be possible in threefold and S6 symmetric cyclic hexapeptides. The results show that the cyclic hexapeptides formed by the linking of two β turn tripeptide fragments differ mainly in (a) the hydrogen bonding scheme present in the β turn tripeptides and (b) the conformation at the α-carbon atoms where the two tripeptide fragments link. The different hydrogen bonding schemes found in the component β turns are: 1) a β turn with only a 4 ± 1 hydrogen bond, 2) a type I or I' β turn with 4 ± 1 and 3 ± 1 hydrogen bonds occurring in a bifurcated form and 3) a type II or II' β turn having both the 4 ± 1 and the 3 ± 1 hydrogen bonds with the same acceptor oxygen atom. The conformation at the linking α-carbon atoms was found to lie either in the extended region or in the 3 ± 1 hydrogen bonded γ turn or inverse γ turn regions. Further, the threefold and the S6 symmetric conformations have three γ turns interleaved by three extended regions or three inverse γ turns, respectively. The feasibility of accommodating alanyl residues of both isomeric forms in the CHP minima has been explored. Finally, the available experimental data are reviewed in the light of the present results.
Resumo:
Abstaract is not available.
Resumo:
The triplets of four cyclic enethiones, including thiocoumarin, have been investigated by nanosecond laser flash photolysis. Data are presented for transient spectra and kinetics associated with triplets, quantum yields of intersystem crossing and singlet oxygen photosensitization. The quenching of the thiocoumarin triplet (A:, = 485 nm, E:,, = 8.8 x lo3 dm3 mol-' cm-'in benzene) by several olefins, amines and hydrogen donors occurs with rate constants of 107-5 x lo9 dm3 mol-' s-'; the lower limits of quantum yields ( c#+~) for the related photoreactions, estimated from ground-state depletion, are generally small (0.0-0.1 1 in benzene, except for good hydrogen donors, namely, p-methoxythiophenol and tri-n-butylstannane) . The radical anion of thiocoumarin (A,,, = 405-435 nm) is formed in two stages upon triplet quenching by triethylamine in acetonitrile; the fast component is the result of direct electron transfer to the triplet and the slower component is assigned to secondary photoreduction of the thione ground state by the a-aminoalkyl radical derived from the triethylamine radical-cation.
Resumo:
Crystal structures of six isopropylidene nucleoside derivatives are described. The results show that, under external cyclic constraints, the ribose assumes a variety of unusual conformations. In those compounds which possess a base-to-sugar cyclization through the C(4′) atom, the furanose pucker is predominantly C(4′)-endo, O(4′)-exo. The possible relevance of the sulphur geometry in two of the compounds to certain structural aspects of the action of the enzyme thymidylate synthetase is also pointed out.
Resumo:
An attempt has been made to bring the literature on polymeric peroxides together from all angles in order to present a comprehensive picture about them. Both polyperoxides, where the peroxide group has been attached to the main chain, and polymeric hydroperoxides, where the peroxide group is present as a side chain, have been considered. Various aspects such as formation, thermal decomposition characteristics, photodecomposition, and analysis of peroxides have been discussed.
Resumo:
The crystal structure of the cyclic peptide disulfide Boc-Cys-Pro-Aib-Cys-NHMe has been determined by X-ray diffraction. The peptide crystallizes in the space group P212121, with A = 8.646(1), B = 18.462(2), C = 19.678(3)Å and Z = 4. The molecules adopt a highly folded compact conformation, stabilized by two intramolecular 4→ 1 hydrogen bonds between the Cys (1) and Pro (2) CO groups and the Cys (4) and methylamide NH groups, respectively. The backbone conformational angles for the peptide lie very close to those expected for a 310 helix. The S-S bridge adopts a right handed twist with a dihedral angle of 82°. The structure illustrates the role of stereochemically constrained residues, in generating novel peptide conformations. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; Boc, t-butyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; NHMe, N-methylamide; Tosyl, p-toluenesulfonyl.
Resumo:
The cyclic biscystine peptides (la) and (lb) adopt antiparallel 0-sheet conformations in solution, characterized by distinctive 1H n.m.r. spectral paramete.
Resumo:
MANY cyclic peptides have interesting biological functions and the details of their molecular structure and conformation have been the subject of extensive investigations. Cyclic dipeptides such as diketopiperazine have been synthesised and shown to occur with the peptide units in the cis configuration1,2. In the case of a tripeptide, cyclisation can take place only if all three units are in the cis configuration3. In cyclic peptides with four units also, cis peptides are found4,5. As the number of the peptide units increases, the more stable trans configuration is generally more common6,7. We report here the main results of our X-ray crystallographic investigations of the cyclic tripeptides L-Pro-L-Pro-L-Pro and L-Pro-L-Pro-L-Hyp (hereafter called CTP 1 and CTP 2, respectively). CTP 1 was synthesised by Rothe et al. 8 and its derivatives have been prepared by Blout and his collaborators9.
Resumo:
The paper describes a novel method of finding the position and orientation of a relatively rigid molecule in the unit cell from criteria concerning allowed contact distances between atoms. On application to the crystal structure of a hexapeptide, C25H31N6O8.2H2O, it was possible to solve the structure from this starting point, by a series of SFLS refinements with an increasingly larger number of reflexions at successive stages. The packing analysis succeeded, even though the water molecules were not included to start with.