46 resultados para CRITICAL SYSTEMS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
For five binary liquid systems CS2+CH3CN, CS2+CH3NO2, CS2+(CH3CO)2O, C6H12+(CH3CO)2O, n-C7H16+(CH3CO)2O, the electrical resistance has been measured near the critical solution temperatures. The behaviour is universal. Below Tc, the conductivities of the two phases follow σ1−σ2 β, where = T−Tc Tc with β≈0.35. In the one phase region with b≈0.35±0.1 and is positive in some cases and negative in others.
Resumo:
The electrical resistivity of bulk GexTe100-x glasses has been measured as a function of temperature and pressure. Under high pressure, all the glasses were found to undergo sharp discontinuous transitions from glassy semiconductors to crystalline metal. Several of the observed properties such as the transition pressure, conductivity activation energy and pre-exponential factor, exhibit anomalous trends at a composition x = 20. These results suggest that the x = 20 composition in the Ge-Te system should possess salient structural features. A model based on the unusual stability of structural units is proposed for explaining the anomaly at 20 at.% Ge concentration.
Resumo:
The behavior of electrical resistivity in the critical region of three polar + nonpolar binary liquid systems CS2 +(CH3CO)2O, C6H12+(CH3CO)2O, and n‐C7H16+(CH3CO)2O is studied. For the mixtures with critical composition, the two phase region shows a conductivity behavior with σ1−σ2∼ (−ϵ)β with β?0.35. In the one phase region dR/dT has a singularity ϵ−b with b?0.35. A possible theory of the impurity conduction is given, which broadly explains these results. The possibility of dR/dT being positive or negative is also discussed.
Resumo:
The critical resistivity in the binary liquid systems n-C7H16 + CH3OH and CS2 + CH3NO2 is measured from 10 Hz to 100 kHz. There is no noticeable effect of the frequency on the resistivity singularities. Thus any contribution from dielectric dispersion is not appreciable.
Resumo:
The pressure dependence of critical parameters xc, Tc, and β have been analysed in four systems namely cyclohexane + acetic anhydride, n-heptane + acetic anhydride, methanol + n-heptane, and carbon disulphide + acetonitrile. The separation temperature was found to increase linearly with pressure the value of dTc/dP being 28 mK, 11 mK, 22 mK, and 25 mK respectively. These are in fair agreement with earlier measurements available for two systems. For the methanol + n-heptane system dTc/dP is apparently not consistent with the value predicted from the specific heat and thermal expansion data.Die Druckabhängigkeit der kritischen Parameter xc, Tc und β ist in den vier Systemen Cyclohexan + Essigsäureanhydrid, n-Heptan + Essigsäureanhydrid, Methanol + n-Heptan und Schwefelkohlenstoff + Acetonitril analysiert worden. Es wurde gefunden, daß die kritische Temperatur linear mit dem Druck ansteigt. Die Werte für dTc/dP betragen 28 mK, 11 mK, 22 mK und 25 mK. Sie sind in guter überein-stimmung mit früheren Messungen an zweien dieser Systeme. Für Methanol + n-Heptan stimmt der Wert für dT/dP offensichtlich nicht mit Werten, die mit Hilfe von Daten für die spezifische Wärme und die thermische Ausdehnung vorhergesagt wurden, überein.
Resumo:
We study the quenching dynamics of a many-body system in one dimension described by a Hamiltonian that has spatial periodicity. Specifically, we consider a spin-1/2 chain with equal xx and yy couplings and subject to a periodically varying magnetic field in the (z) over cap direction or, equivalently, a tight-binding model of spinless fermions with a periodic local chemical potential, having period 2q, where q is a positive integer. For a linear quench of the strength of the magnetic field (or chemical potential) at a rate 1/tau across a quantum critical point, we find that the density of defects thereby produced scales as 1/tau(q/(q+1)), deviating from the 1/root tau scaling that is ubiquitous in a range of systems. We analyze this behavior by mapping the low-energy physics of the system to a set of fermionic two-level systems labeled by the lattice momentum k undergoing a nonlinear quench as well as by performing numerical simulations. We also show that if the magnetic field is a superposition of different periods, the power law depends only on the smallest period for very large values of tau, although it may exhibit a crossover at intermediate values of tau. Finally, for the case where a zz coupling is also present in the spin chain, or equivalently, where interactions are present in the fermionic system, we argue that the power associated with the scaling law depends on a combination of q and the interaction strength.
Resumo:
The composition-controlled metal-insulator transition in the perovskite systems LaNi1-xMxO3 (M = Cr, Mn, Fe, and Co) has been investigated by transport measurements over the temperature range 12-300 K. These systems, which have critical electron densities (nc) in the range (1-2) -1020 electrons cm-3, exhibit sharp metal-insulator transitions at the base temperature. The corresponding minimum metallic conductivity (Ï-min), separating the localized and itinerant electronic regimes, is of the order of 102 ohm-1 cm-1. Particular attention is paid to the idea of Ï-min scaling with nc, and our present results are compared with earlier studies of the metal-insulator transition in low (e.g., Ge:Sb) and high (e.g., metal-ammonia, supercritical Hg) electron-density systems. A link is established between the transport and magnetic properties of the title systems at the metal-insulator transition.
Resumo:
The attenuation of long-wavelength phonons due to their interaction with electronic excitations in disordered systems is investigated here. Lattice strain couples to electronic stress, and thus ultrasonic attenuation measures electronic viscosity. The enhancement and critical divergence of electronic viscosity due to localization effects is calculated for the first time. Experimental consequences for the anomalous increase of ultrasonic attenuation in disordered metals close to the metal-insulator transition are discussed. In the localized regime, the appropriate model is one of electronic two-level systems (TLS’s) coupled to phonons. The TLS consists of a pair of states with one localized state occupied and the other unoccupied. The density of such low-excitation-energy TLS’s is nonzero due to long-range Coulomb interactions. The question of whether these could be significant low-energy excitations in glasses is touched upon.
Resumo:
Solid solutions of the formula La2−xLnxCuO4 (Ln = Pr, Nd) possess the orthorhombic structure of La2CuO4 for small values of x and transform to the tetragonal Nd2CuO4 structure at a critical value of x. At the critical composition, there is an abrupt change in specific volume as well as the Image ratio. The material exhibits temperature-independent electrical resistivity below the critical value x and semiconducting behaviour above it. The specific volume and Image ratio smoothly decrease with increase in x in the La2Cu1−xNixO4 system, although the solid solution possess the tetragonal K2NiF4 structure when x>0.1. Compositions with x>0.1 exhibit a gradual semiconductor metal transition similar to that of La2NiO4, the transition temperature decreasing with increasing
Resumo:
Scaling relations between the critical indices are derived for two similar systems exhibiting λ lines: binary liquid systems and ferromagnets under pressure. In addition to the usual scaling relations, this procedure gives information about other weakly divergent quantities like isothermal compressibility and thermal expansion. Suggestions for more detailed investigations are made.
Resumo:
The main objective of on-line dynamic security assessment is to take preventive action if required or decide remedial action if a contingency actually occurs. Stability limits are obtained for different contingencies. The mode of instability is one of the outputs of dynamic security analysis. When a power system becomes unstable, it splits initially into two groups of generators, and there is a unique cutset in the transmission network known as critical cutset across which the angles become unbounded. The knowledge of critical cutset is additional information obtained from dynamic security assessment, which can be used for initiating preventive control actions, deciding emergency control actions, and adaptive out-of-step relaying. In this article, an analytical technique for the fast prediction of the critical cutset by system simulation for a short duration is presented. Case studies on the New England ten-generator system are presented. The article also suggests the applications of the identification of critical cutsets.