65 resultados para CORTISOL METABOLITES

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Norepinephrine inhibits cortisol-mediated induction of hepatic tryptophan pyrrolase in rats. During cold exposure the stabilization of this enzyme appears to occur by an interaction of corticoids and norepinephrine on the induction process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of hepatic tryptophan-2,3-dioxygenase in rats by cortisol or corticosterone was inhibited on treatment with norepinephrine. The I-adrenergic blockers showed a small potentiating effect of the norepinephrine-mediated inhibition. The I-adrenergic blockers significantly reversed this inhibition, suggesting that norepinephrine acts Image the I-receptor in inhibition of the cortisol-mediated induction of this enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concise and diversity-oriented approach, incorporating elements of regio- and stereocontrol, to the recently isolated bioactive polyoxygenated cyclohexanoid natural products acremines A. B and I. from commercially accessible building blocks, is outlined. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of noradrenaline inhibited the induction of hepatic trytophan pyrrolase by Cortisol but not by tryptophan. The selective inhibition of pyrrolase was specific to noradrenaline, whereas adrenaline and rat growth hormone also inhibited tyrosine aminotransferase. None of those three hormones had any effect on the incorporation of [32P]-orthophosphate into RNA, stimulated by cortisol. Other biogenic amines, polypeptide hormones and steroid analogues were not inhibitory to the induction of tryptophan pyrrolase by cortisol. The α-adrenergic agonist, phenylephrine, potentiated the noradrenaline inhibition whereas Image -threo-3,4-dihydroxyphenylserine, its precursor, together with pargyline had no effect on the induction process of pyrrolase. These results support the view that noradrenaline exerts its inhibitory action at the cell membrane via the α-receptor, and is not mediated directly by an intracellular mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The metabolic disposition of R-(+)-pulegone (1) was examined in rats following four daily oral doses (250 mg/kg). 2. Six metabolites, namely pulegol (II), 2-hydroxy-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (IV), menthofuran (V), 5-methyl-2-(1-methyl-1-carboxyethylidene)cyclohexanone (VI), and 5-methyl-5-hydroxy-2-(1-hydroxy-1-carboxyethyl)cyclohexanone (VII) have previously been isolated from rat urine, and identified (Moorthy et al. (1989a). Eight new metabolites have now been isolated from rat urine, namely, 5-hydroxy-pulegone (VIII), piperitone (IX), piperitenone (X), 7-hydroxy-piperitone (XI), 8-hydroxy piperitone (XII), p-cresol (XIII), geranic acid (XIV) and neronic acid (XV). These were identified by n.m.r., i.r. and mass spectrometry. 3. Based on these results, metabolic pathways for the biotransformation of R-(+)-pulegone in rat have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotransformation of 3 beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5 alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9 alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3 beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5 alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C-22 phenolic acid intermediates and complete removal of the C-17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C-17-C-20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of yeast, Saccharomyces cerevisiae, in the separation of quartz from hematite is demonstrated. Yeast cells; as well as their metabolites, functioned as flotation collectors, depressants or flocculants and dispersants for hematite and quartz. Interaction between yeast and the above minerals resulted in significant surface chemical changes, rendering quartz surfaces hydrophobic and hematite hydrophilic. Mineral-specific extracellular proteins and exopolysaccharides were secreted by yeast cells when grown in the presence of quartz and hematite, respectively. Quartz could be efficiently separated from hematite through microbially induced flotation and selective flocculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid - a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the generation of H202 in cellular oxidations has existed for many years. It has been assumed that H202 is tOxiC tO cells and the presence of catalase is indicative of a detoxication mechanism. Other radicals of oxygen were recently recognized to be more potent destructive agents of biological material than H202. Also catalase and other peroxidases utilize H202 in some cellular oxidation processes leading to several important metabolites. Thus, the generation of H202 in cellular processes seems to be purposeful and H202 can not be dismissed as a mere undesirable byproduct. Biological formation of H202 is not limited to the previously known flavoproteins and some copper enzymes, but other redox systems, particularly heme and non-heme iron proteins, are now found to undergo auto-oxidation yielding H202. The capacity for generation of H202 is now found to be widespread in a variety of organisms and in the organdies of the cells. The reduction of oxygen to H20 by mitochondrial cytochrome oxidase being the predominant oxygen-utilizing reaction had over-shadowed the importance of the quantitatively minor pathways. Under aerobic conditions generation of H202 by a Variety of biomembranes has now been found to be a physiological event interlinked with phenomena such as phagocytosis, transport processes and thermogenesis in some as yet unidentified way. The underlying mechanisms of these processes seem to involve generation and utilization of H202 in mitochondria, microsomes, peroxisomes or plasma membranes. This review gives an account of the potential of biomembranes to generate H202 and its implication in the cellular processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolism of linalyl acetate by Pseudomonas incognita isolated by enrichment culture on the acyclic monoterpene alcohol linalool was studied. Biodegradation of linalyl acetate by this strain resulted in the formation of linalool, linalool- 8-carboxylic acid, oleuropeic acid, and A5-4-acetoxy-4-methyl hexenoic acid. Cells adapted to linalyl acetate metabolized linalyl acetate-8-aldehyde to linalool- 8-carboxylic acid, linalyl acetate-8-carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and geraniol-8-carboxylic acid. Resting cell suspensions previously grown with linalyl acetate oxidized linalyl acetate-8-aldehyde to linalyl acetate-8- carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and pyruvic acid. The crude cell-free extract (10,000 g of supernatant), obtained from the sonicate of linalyl acetate-grown cells, was shown to contain enzyme systems responsible for the formation of linalyl acetate-8-carboxylic acid and linalool-8-carboxylic acid from linalyl acetate. The same supernatant contained NAD-linked alcohol and aldehyde dehydrogenases involved in the formation of linalyl acetate-8-aldehyde and linalyl acetate-8-carboxylic acid, respectively. On the basis of various metabolites isolated from the culture medium, resting cell experiments, growth and manometric studies carried out with the isolated metabolites as well as related synthetic analogs, and the preliminary enzymatic studies performed with the cellfree extract, a probable pathway for the microbial degradation of linalyl acetate with the acetoxy group intact is suggested.