53 resultados para CONFIGURATION-SPACES
em Indian Institute of Science - Bangalore - Índia
Resumo:
Given a plant P, we consider the problem of designing a pair of controllers C1 and C2 such that their sum stabilizes P, and in addition, each of them also stabilizes P should the other one fail. This is referred to as the reliable stabilization problem. It is shown that every strongly stabilizable plant can be reliably stabilized; moreover, one of the two controllers can be specified arbitrarily, subject only to the constraint that it should be stable. The stabilization technique is extended to reliable regulation.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The low frequency surface magnetoplasmon-type polaritons in the Faraday configuration will propagate as generalized surface modes if 4ε∞/(ε∞ − 1)2 greater-or-equal, slanted μ2 and as pure surface modes if this inequality is reversed. The possibility of using the low frequency surface waves as a suitable probe for measuring the carrier concentration of a given sample is discussed.
Resumo:
Preferred conformations of the competitive inhibitors glycyl-L-phenylalanine and glycyl-D-phenylalanine and their mode of binding to thermolysin have been studied. The difference in configuration is shown to affect significantly the mode of binding to thermolysin. Gly-D-Phe prefers to enter the active site in the global minimum conformation whereas Gly-L-Phe may enter in a higher energy conformation. Moreover, D-enantiomer is shown to have a better fit than the L-counterpart in the active site.
Resumo:
Configuration interaction calculation have been carried out on the s-hole states of Mn2+ Fe2+ (both high- and low-spin configurations). Co2+, Ca2+, K+ and Na+ including configurations involving virtual orbitals. The results show good agreement with the multiplet structures found in X-ray photoelectron spectra of these ions.
Resumo:
In this paper the problem of stabilization of systems by means of stable compensations is considered, and results are derived for systems using observer�controller structures, for systems using a cascade structure, and for nonlinear systems
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
The analysis of the dispersion equation for surface magnetoplasmons in the Faraday configuration for the degenerate case of decaying constants being equal is given from the point of view of understanding the non-existence of the “degenerate modes”. This analysis also shows that there exist well defined “degenerate points” on the dispersion curve with electromagnetic fields varying linearly over small distances taken away from the interface.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
In this brief, we present a new circuit technique to generate the sigmoid neuron activation function (NAF) and its derivative (DNAF). The circuit makes use of transistor asymmetry in cross-coupled differential pair to obtain the derivative. The asymmetry is introduced through external control signal, as and when required. This results in the efficient utilization of the hard-ware by realizing NAF and DNAF using the same building blocks. The operation of the circuit is presented in the subthreshold region for ultra low-power applications. The proposed circuit has been experimentally prototyped and characterized as a proof of concept on the 1.5-mum AMI technology.
Resumo:
The absolute configuration of echitamine iodide has been determined by the Bijvoet technique, making use of the intensity differences between hkl and {Mathematical expression} reflections due to the anomalous scattering of CuKa radiation by the iodine atom. The various steps in the procedure are discussed in detail in this paper.