11 resultados para COLOSTRUM-DEPRIVED PIGLETS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Acid denaturation of calf thymus DNA in vitro followed by acridine orange (AO) binding induced a 112% increase in the emission of red, a 58% decrease in green, and a consequential decrease in the ratio of green:red fluorescences from 1.7 to 0.9. This metachromatic property of AO on binding to DNA following acid denaturation was utilized to study the susceptibility of normal and ovine follicle-stimulating hormone (oFSH) actively immunized bonnet monkey spermatozoa voided throughout the year. For analyses, the scattergram generated by the emission of red and green fluorescences by 10,000 AO-bound sperm from each semen sample was divided into 4 quadrant zones representing percentage cells fluorescing high green-low red (Q1), high green-high red (Q2), low green-low red (Q3) and low green-high red. (Q4). Normal monkey sperm obtained during the months of July-December exhibited 76, 13, and 11% cells in Q2, Q3, and Q4 quadrants, respectively. However, during January-June, when the females of the species are markedly subfertile, noncycling, and amenorrhoeic, the spermatozoa ejaculated by the male monkeys exhibited 38, 39, and 23% sperm in Q2, Q3, and Q4, respectively, the differences being highly significant (p < .01-.001). FSH deprivation induced significant shifts in fluorescence emissions, from respective controls, with 39, 33, and 28% cells in Q2, Q3, and Q4, respectively, during July-December, and 15, 48, and 37% sperm in Q2, Q3, and Q4 quadrants, respectively, during January-June. It is postulated that the altered kinetics of germ cell transformations and the deficient spermiogenesis observed earlier following FSH deprivation in these monkeys may have induced the enhanced susceptibility to acid denaturation in sperm.
Resumo:
beta-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum beta-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk beta-lactoglobulin. Comparative sequence analysis of BLG-col to milk beta-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC50 of 498 +/- 2 mu M, which was rationalized through docking simulations using Molgrow virtual docker. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Gibberellic acid (GA3) induced a marked elongation of 2.5-centimeter shoot tips of Cuscuta chinensis Lamk. cultured in vitro. In terms of the absolute amount of elongation, this growth may be the largest reported for an isolated plant system. The response to hormone was dependent on an exogenous carbohydrate supply. The hormone-stimulated growth was due to both cell division and cell elongation. The growth response progressively decreased if GA3 was given at increasingly later times after culturing, but the decreased growth response could be restored by the application of indole-3-acetic acid (IAA) to the apex. Explants deprived of GA3 gradually lost their ability to transport IAA basipetally, but this ability was also restored by auxin application. The observations are explained on the basis that: (a) the growth of Cuscuta shoot tip in vitro requires, at least, both an auxin and a gibberellin; and (b) in the absence of gibberellin the cultured shoot tip explants lose the ability to produce and/or transport auxin.
Resumo:
Adult fertile male bonnet monkeys (Macaca radiata) were continuously deprived of endogenous follicle stimulating hormone (FSH) support for 240 days by injecting them with 1 ml of characterized monkey antiserum to oFSH every 48 hr; control monkeys received during the same period normal monkey serum instead. Testicular function was assessed at periodic intervals by (a) carrying out differential counting of sperm in the ejaculate obtained and (b) determining the hyaluronidase activity as well as in vitro 3H thymidine incorporation into DNA of testicular tissue removed at biopsy. Both the quality (viability and motility) of the sperms voided and the total sperm counts showed marked decreases as a function of time of immunization, the first significant reduction being noted by 100 days. FSH deprivation affected both the biochemical parameters used to test testicular functionality they being reduced at ∼200 days by 50%-60%. The fertility of these monkeys was evaluated at periodic times after 90 days of treatment by means of mating studies. FSH deprivation had rendered the monkeys incapable of impregnating any of the females used. Testosterone and luteinizing hormone (LH) levels remained unchanged following FSH antiserum injection. With cessation of antiserum treatment testicular function and fertility were completely restored to normalcy, indicating that the observed effect was specifically due to FSH deprivation. This study thus provides conclusive evidence for the involvement of FSH in maintenance of testicular function and fertility in the adult male primate.
Resumo:
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.
Resumo:
Preovulatory follicular atresia was studied using pregnant mare serum gonadotropin (PMSG)-primed rats (15 IU/rat) which were deprived of hormonal support either by allowing the metabolic clearance of the PMSG or by injecting a specific PMSG antiserum (PMSG a/s). Atresia was monitored by an increase in lysosomal cathepsin-D activity and a decrease in the receptor activity of the granulosa cells (GC) isolated from the preovulatory follicles. It was shown that the increase in lysosomal activity and the decrease in receptor activity seen at 96 h after PMSG (or PMSG plus PMSG a/s) could be arrested both by follicle stimulating hormone (FSH) and luteinizing hormone (LH). Injection of cyanoketone or clomiphene citrate together with FSH/LH prevented this 'rescue' suggesting a role for estrogens in the regulation of atresia. Although the administration of estradiol-17 beta (20 micrograms/rat) together with PMSG a/s could show a 'rescue effect' in terms of reduction in cathepsin-D activity the gonadotropin receptor activities of these granulosa cells were not restored. The injection of dihydrotestosterone (DHT) to 48 h PMSG-primed rats induced atresia as noted by an increase in cathepsin-D activity. However, the exogenous administration of FSH along with DHT prevented this atretic effect suggesting that DHT is not having a direct effect on atresia. Determination of androgen: estrogen content of the granulosa cells and an analysis of the individual profile of androgen and estrogen revealed that the increase in cathepsin-D activity could be correlated only with the decrease in GC estrogen content. This along with the observation that GC showed a loss of estrogen synthesis well before the increase in cathepsin-D activity strongly points out that the lack of estrogen rather than an increase in androgen is the principle factor responsible for the atresia of preovulatory follicles in the rat.
Resumo:
The ability of prolactin to influence the responsiveness of the lactating rat pituitary to luteinising hormone releasing hormone has been examinedin vitro. The pituitary responsivenessin vivo to luteinising hormone releasing hormone decreased as a function of increase in the lactational stimulus. Prolactin inhibited the spontaneousin vitro release of luteinising hormone and follicle stimulating hormone to a small extent, from the pituitary of lactating rats with the suckling stimulus. However, it significantly inhibited the release of these two hormones from luteinising hormone releasing hormone-stimulated pituitaries. The responsiveness of pituitaries of rats deprived of their litter 24 h earlier, to luteinising hormone releasing hormone was also inhibited by prolactin, although minimal. It was concluded that prolactin could be influencing the functioning of the pituitary of the lactating rat by (a) partially suppressing the spontaneous release of gonadotropin and (b) inhibiting the responsiveness of the pituitary to luteinising hormone releasing hormone.
Resumo:
While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.
Resumo:
Although a distinct need for FSH in the regulation of follicular maturation in the primate is well recognized, it is not clear how FSH controls the functionality of different cellular compartments of the follicle. It is also not evident whether there is a requirement for LH in follicular maturation in the primate. In the first part of the present study, female bonnet monkeys were administered a well-characterized ovine (o) LH antiserum to neutralize endogenous monkey LH for different periods during the follicular phase, and the effect on the overall follicular maturation process was assessed by analyzing serum estrogen (E) and progesterone (P) profiles. Neither continuous LH deprivation from Day 8 of the cycle nor deprivation of LH on any one day between Days 6 and 10 had a significant effect on serum E and P profiles and the follicular maturation process. The period for which the antiserum was effective was dependent upon the dose injected; 1 ml of the antiserum given on Day 8 blocked ovulation but not follicular maturation. To assess the effect of deprivation of LH/FSH at the cellular level, animals were deprived in vivo of LH (on Days 8 and 9 of the cycle) or of FSH (on Day 6 of the cycle) by injection of highly characterized hCG and ovine (o) FSH antisera, respectively; the in vitro responsiveness of granulosa and thecal cells isolated on Day 10 from these animals was then determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
PROBLEM: It is yet to be determined clearly whether the two hormones FSH and T act synergistically in the same cell type-the Sertoli cells-to control overall spermatogenesis or influence independently the transformation of specific germ cell types during spermatogenesis in the adult mammal. METHOD: Adult male bonnet monkeys specifically deprived of either FSH or LH using immunoneutralization techniques were monitored for changes in testicular germ cell transformation by DNA flow cytometry. RESULTS: FSH deprivation caused a significant reduction (>40%; P < 0.05) in [H-3] thymidine incorporation into DNA of proliferating 2C (spermatogonial) cells, a marked inhibition (>50%) in the transformation of 2C to primary spermatocytes (4C) and a concomitant, belated reduction (50%) in the formation of round spermatids (1C). In contrast, specific LH/T deprivation led to an immediate arrest in the meiotic transformation of 4C to 1C/HC leading to an effective and significant block (<90%; P < 0.01) in sperm production. CONCLUSION: Thus, LH rather than FSH deprivation has a more pronounced and immediate effect as the former primarily blocks meiosis (4C --> 1C/HC) which controls production of spermatids. These data provide evidence for LH/T and FSH regulating spermatogenic process in the adult primate by primarily acting at specific germ cell transformation steps.
Resumo:
We investigate polarity reversals in the geodynamo using a rotating, convection-driven dynamo model. As the flow in rapidly rotating convection is dominated by columns aligned with the axis of rotation, the focus is on the dynamics of columnar vortices. By studying the growth of a seed magnetic field to a stable axial dipole field, we show that the magnetic field acts in ways that significantly enhance the relative helicity between cyclonic and anticyclonic vortices. This flow asymmetry is the hallmark of a dipolar dynamo. Strong buoyancy, on the other hand, offsets the effect of the magnetic field, establishing parity between positive and negative vortices. As the dipole field is deprived of the helicity required to support itself, the dynamo is pushed into a reversing state. This is a likely regime for polarity reversals in the Earth's core. The integral lengthscale at which buoyancy injects energy is not significantly different from the convective flow lengthscale, which implies that buoyancy does not feed vortices at the small scales where non-linear inertia is present. The lengthscale at which the Lorentz force acts in the reversing dynamo is small, which may allow the passive presence of non-linear inertia in the small scales.