4 resultados para CHARM
em Indian Institute of Science - Bangalore - Índia
Resumo:
We attempt a comprehensive analysis of the low lying charm meson states which present several puzzles, including the poor determination of masses of several non-strange excited mesons. We use the well-determined masses of the ground states and the strange first excited states to 'predict' the mass of the non-strange first excited state in the framework of heavy hadron chiral perturbation theory, an approach that is complementary to the well-known analysis of Mehen and Springer. This approach points to values for the masses of these states that are smaller than the experimental determinations. We provide a critical assessment of these mass measurements and point out the need for new experimental information. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular. However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest. But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.
Resumo:
We consider the vector and scalar form factors of the charm-changing current responsible for the semileptonic decay D -> pi/nu. Using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(alpha(2)(s)) terms in perturbative QCD, we constrain the shape parameters of the form factors and find exclusion regions for zeros on the real axis and in the complex plane. For the scalar form factor, a low-energy theorem and phase information on the unitarity cut are also implemented to further constrain the shape parameters. We finally propose new analytic expressions for the D pi form factors, derive constraints on the relevant coefficients from unitarity and analyticity, and briefly discuss the usefulness of the new parametrizations for describing semileptonic data.
Resumo:
The Large Hadron Collider (LHC) has completed its run at 8 TeV with the experiments ATLAS and CMS having collected about 25 fb(-1) of data each. Discovery of a light Higgs boson coupled with lack of evidence for supersymmetry at the LHC so far, has motivated studies of supersymmetry in the context of naturalness with the principal focus being the third generation squarks. In this work, we analyze the prospects of the flavor violating decay mode (t) over tilde (1) -> c chi(0)(1) at 8 and 13 TeV center-of-mass energy at the LHC. This channel is also relevant in the dark matter context for the stop-coannihilation scenario, where the relic density depends on the mass difference between the lighter stop quark ((t) over tilde (1)) and the lightest neutralino (chi(0)(1)) states. This channel is extremely challenging to probe, especially for situations when the mass difference between the lighter stop quark and the lightest neutralino is small. Using certain kinematical properties of signal events we find that the level of backgrounds can be reduced substantially. We find that the prospect for this channel is limited due to the low production cross section for top squarks and limited luminosity at 8 TeV, but at the 13 TeV LHC with 100 fb(-1) luminosity, it is possible to probe top squarks with masses up to similar to 450 GeV. We also discuss how the sensitivity could be significantly improved by tagging charm jets.