3 resultados para CBR

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical charge density analyses on 2,2-dibromo-2,3-dihydroinden-1-one have been carried out to quantify the topological features of a short CBr....O halogen bond with nearly linear geometry (2.922 angstrom, angle CBr....O = 172.7 degrees) and to assess the strength of the interactions using the topological features of the electron density. The electrostatic potential map indicates the presence of the s-hole on bromine, while the interaction energy is comparable to that of a moderate OH....O hydrogen bond. In addition, the energetic contribution of CH.....Br interaction is demonstrated to be on par with that of the CBr....O halogen bond in stabilizing the crystal structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.