513 resultados para CARBON OXIDES
em Indian Institute of Science - Bangalore - Índia
Resumo:
The concepts and theoretical origins of conduction domains for solid electrolytes and electrode polarization are outlined briefly. The point electrode made of the ' solid electrolyte material is useful for deflecting the semipermeability flux away from the electrode. The emf of galvanic sensors consisting of two solid electrolytes in intimate contact with each other and in which transport occurs by a common ion is reviewed. The voltage of such cells depends on the chemical potential of the active species at the interface between the two electrolytes, which can be evaluated from the transport properties of electrolytes using a numerical procedure. The factors governing the speed of response of solid electrolyte gas sensors are analyzed. A rigorous expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for nonisothermal galvanic sensors are outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. The principles of operation of galvanic sensors for oxygen, sulphur, oxides of sulphur (SOx,x=2,3), carbon, oxides uf carbon (COx,x= 1,2), oxides of nitrogen (NOx,x= 1,2) and silicon are discussed. The use of auxiliary electrodes in galvanic sensors to expand the detection capability of known solid electrolytes to a large number of species is explained with reference to sensors for sulphur and oxides of sulphur (SOx,x=2,3).Finally the cause of the common errors in galvanic measurements and test for the correct functioning of galvanic sensors is given.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
Nanorods of several oxides, with diameters in the range of 10-200 nm and lengths upto a few microns, have been prepared by templating against carbon nanotubes. The oxides include V2O5, WO3, MoO3 and Sb2O5 as well as metallic MoO2, RuO2 and IrO2. The nanorods tend to be single-crystalline structures. Nanotube structures have also been obtained in MoO3 and RuO2.
Resumo:
Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.
Resumo:
The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60-degrees-C is studied. Platinized-carbon electrodes with sm amounts of functional groups exhibit higher catalytic activity compared to those with large concentrations of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An x-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface functional-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.
Resumo:
Very rapid (within 5 min), selective, single-step deoxygenation of layer- and chain-containing oxides, MoO3, CrO3, V2O5, alpha-VOPO4 . 2H(2)O and Ag6Mo10O33 has been accomplished using graphitic carbon in a microwave-assisted reaction. The products were found to be MoO2, Cr2O3, VO2, VPO4 and a mixture of (Ag + MoO2), respectively. Products were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), IR and electron paramagnetic resonance (EPR) spectroscopies. Although conventional methods of preparing these materials are tedious, the present method is simple, fast and yields very homogeneous products of good crystallinity. Our results reveal that while layer- and chain-containing oxides undergo rapid microwave-assisted carbothermal reduction, the non-layered materials do not. The high structural selectivity of these reactions is suggestive of the topochemical nature of the fast reduction process.
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.
Resumo:
During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..
Resumo:
The nature of amorphous carbon has been explored by molecular mechanics by examining the structures of species such as C84Hx and C150Hx, wherein the percentage of sp(3) carbons is progressively increased in a graphitic network. The nature of diamond-like carbon has been similarly investigated by examining the structures of C84Hx and C102Hx where the percentage of sp(2) carbons is varied in an sp(3) network. The dependence of the average coordination number as well as the sp(3)/sp(2) atom ratio on the atom fraction of hydrogen has been investigated in light of the random covalent network model.
Resumo:
Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.
Resumo:
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
The cytotoxicity of carbon nanotubes (CNTs) is a major concern today well before its unusual physicochemical, mechanical, and electrical properties are fully exploited for commercial interests and subsequent mass production leading to greater possibilities for its exposure to humans and the environment. Contradictory reports on cytotoxicity of CNTs often appear in the literature and a mechanistic explanation of the reported toxicity remains obscure. We review here the conflicting results to focus categorically on an array of issues in CNT cytotoxicity. They include dispersion, aggregation status, coating or functionalization and immobilization, cellular uptake or internalization, purity in terms of metal catalyst contaminants, size and size distribution, surface area, surface chemistry and surface reactivity, cell types selected for experimentation as well as bioassay of nanotoxicity itself attesting as an issue in cytotoxicity. Recently a general agreement has emerged towards the potential toxicity of CNTs, although various paradigms explaining the mechanisms of CNT cytotoxicity continue to be elusive in the literature. A lack of synergy among various issues while studying cytotoxicity and most developed paradigms for the mechanism of CNT toxicity is highlighted.
Resumo:
Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.