117 resultados para CALC-ALKALINE
em Indian Institute of Science - Bangalore - Índia
Resumo:
The formation and growth of continental crust in the Archean have been evaluated through models of subduction-accretion and mantle plume. The Nilgiri Block in southern India exposes exhumed Neoarchean lower crust, uplifted to heights of 2500 m above sea level along the north western margin of the Peninsula. Major lithologies in this block include charnockite with or without garnet, anorthosite-gabbro suite, pyroxenite, amphibolite and hornblende-biotite gneiss (TTG). All these rock types are closely associated as an arc magmatic suite, with diffuse boundaries and coeval nature. The charnockite and hornblende-biotite gneisses (TTG) show SiO2 content varying from 64 to 73 wt.%. The hornblende-biotite gneisses (TTG) are high-Al type with Al2O3 >15 wt.% whereas the charnockites show Al2O3 <15 wt.%. The composition of charnockite is mainly magnesian and calcic to calc-alkaline. The mafic-ultramafic rocks show composition close to that of tholeiitic series. The low values of K(2)o (<3 wt.%), (K/Rb)/K2O (<500), Zr/Ti, and trace element ratios like (La/Yb)n/(Sr/Y), (Y/Nb), (Y + Nb)/Rb, (Y+Ta)/Rb, Yb/Ta indicate a volcanic arc signature for these rocks. The geochemical signature is consistent with arc magmatic rocks generated through oceanic plate subduction. The primitive mantle normalized trace element patterns of these rocks display enrichment in large ion lithophile elements (LILE) and comparable high field strength elements (HFSE) in charnockite and hornblende-biotite gneisses (TTG) consistent with subduction-related origin. Primitive mantle normalized REE pattern displays an enrichment in LREE in the chamockite and hornblende-biotite gneisses (TTG) as compared to a flat pattern for the mafic rocks. The chondrite normalized REE patterns of zircons of all the rock types reveal cores with high HREE formed at ca. 2700 Ma and rims with low HREE formed at 2500-2450 Ma. Log-transformed La/Th-Nb/Th-Sm/Th-Yb/Th discrimination diagram for the mafic and ultramafic rocks from Nilgiri displays a transition from mid-oceanic ridge basalt (MORB) to island arc basalt (IAB) suggesting a MORB source. The U-Pb zircon data from the charnockites, mafic granulites and hornblende-biotite gneisses (TTG) presented in our study show that the magma generation during subduction and accretion events in this block occurred at 2700-2500 Ma. Together with the recent report on Neoarchean supra-subduction zone ophiolite suite at its southern margin, the Nilgiri Block provides one of the best examples for continental growth through vertical stacking and lateral accretion in a subduction environment during the Neoarchean. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.
Resumo:
The emf of the galvanic cell, Pt, Ni + NiO/(CaO) ZrO2/MS + MSO4, Ir, Pt, where M is calcium, strontium, or barium, has been measured in the temperature range 850 to 1100 K. From these measurements the Gibbs’ energy changes for the oxidation of sulfides of alkaline earth metals to their respective sulfates have been calculated. The results are compared with available thermodynamic data in the literature. The agreement varies from ±2 kJ for the strontium system to ±20 kJ in the case of barium. Trends in the stabilities of alkaline earth sulfates are discussed in relation to the properties of the cationic species involved.
Resumo:
Structures of lithium, sodium, magnesium, and calcium complexes of NJ-dimethylformamide (DMF) have been investigated by X-ray crystallography. Complexes with the formulas LiCl.DMF.1/2H20, NaC104.2DMF, CaC12.2DMF.2H20, and Mg(C104)2.6DMF crystallized in space groups P2]/c, P2/c, Pi, and Ella, respectively, with the following cell dimensions: Li complex, a = 13.022 (7) A, b = 5.978 (4) A, c = 17.028 (10) A, = 105.48 (4)O, Z = 8; Na complex, a = 9.297 (4)A, b = 10.203 (3) A, c = 13.510 (6) A, /3 = 110.08 (4)O, Z = 4; Ca complex, a = 6.293 (4) A, b = 6.944 (2) A, c = 8.853(5) A, a = 110.15 (3)O, /3 = 105.60 (6)", y = 95.34 (5)", Z = 1; Mg complex, a = 20.686 (11) A, b = 10.962 (18) A,c = 14.885 (9) A, /3 = 91.45 (5)O, Z = 4. Lithium is tetrahedrally coordinated while the other three cations are octahedrally coordinated; the observed metal-oxygen distances are within the ranges generally found in oxygen donor complexes of these metals. The lithium and sodium complexes are polymeric, with the amide and the anion forming bridging groups between neighboring cations. The carbonyl distances become longer in the complexes accompanied by a proportionate decrease in the length of the central C-N bond of the amide; the N-C bond of the dimethylamino group also shows some changes in the complexes. The cations do not deviate significantly from the lone-pair direction of the amide carbonyl and remain in the amide plane. Infrared spectra of the complexes reflect the observed changes in the amide bond distances.
Resumo:
A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.
Resumo:
Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The variations in the activities of the alkaline and acid phosphatases of the silkworm, Bombyx mori, were studied in all stages of the life cycle. From hatching until the spinning stage a steady increase was recorded in the activity of both the enzymes followed with a conspicuous decrease at each moult. During the pupal stage the alkaline phosphatase was almost absent, whereas the acid phosphatase maintained a high and constant value. Increase or decrease of the activity of the enzymes during larval development was reflected in a decrease or increase in the acid-soluble phosphorus content. Acid phosphatase activity slowly increased from laying of the eggs to hatching of the larvae with a concomitant decrease in the acid-soluble phosphorus. Tissue analysis showed a high concentration of the alkaline enzyme in the intestines, but the haemolymph was almost free of both enzymes. Feeding of inorganic phosphate increased the alkaline enzyme in the intestines, whereas glucose had no effect on either of the enzymes in the intestines.
Resumo:
Solid state 1:1 complexes of divalent Mg, Ca, Sr and Ba with thiomalic acid(tma) have been isolated and characterised by elemental analysis, IR spectra and thermal studies. It is shown that tma coordinates to the metal ions through carboxylic oxygen atoms. Thermal studies of these complexes show that desulphurisation preceeds decarbonylation reaction leading to the formation of metal carbonates in all the cases except Mg where MgO is the end product. Thermal stability of the anhydrous thiomaltes follows the order Mg not, vert, similar Ca > Sr > Ba. Structures have been proposed based on the information obtained from these studies.
Resumo:
Open-circuit potential—time transients during the discharge of alkaline porous iron electrodes at various states-of-charge have been studied. From this, it has been possible to arrive at a correlation between the parameters of self-discharge kinetics of the electrode and observed open-circuit potential—recovery time constants. The study provides a method of estimate the state-of-charge of the rechargeable iron electrodes. As a hydrogen evolution reaction inevitably occurs on alkaline iron electrodes, the kinetics of the reaction have also been investigated.