16 resultados para C91 - Laboratory, Individual Behavior

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lithium stearate soap and layered MoS2 nanoparticles encapsulated in lithium stearate soap are prepared in the laboratory, and their lubricating properties are compared with respect to the particle and particle concentration. The tribotracks after friction test was investigated with Raman Spectroscopy, scanning electron microscopy (SEM) and 3D optical profilometry to understand the action mechanism. The status of the soap particles on a tribotrack changes with time, contact pressure and sliding speed. At low pressure and speed, individual solid undeformed soap particle stand proud of the surface and the topography shows marginal difference with sliding time. In these conditions, no frictional difference between the performance of grease with and without the nanoparticles is observed. Increasing the contact pressure and temperature (low speed and high speed) has a dramatic effect as the soap particles melt and the liquid soap flows over the track releasing the hitherto encapsulated nanoparticles. Consequently, the soap smears the track like a liquid, and the nanoparticles now come directly into the interface and are sheared to generate a low-friction tribofilm. At high particle concentration, the sliding time required for melting of the soap and release of MoS2 is reduced, and the tribofilm is more substantial and uniform consisting of smeared MoS2 and carboxylate soap as observed by SEM and 3D optical profilometry. A change in the Raman Spectra is observed with particle concentration, and this is related to morphology and microstructure of the tribofilm generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, nonhomogeneous Markov chains are proposed for modeling the cracking behavior of reinforced concrete beams subjected to monotonically increasing loads. The model facilitates prediction of the maximum crackwidth at a given load given the crackwidth at a lower load level, and thus leads to a better understanding of the cracking phenomenon. To illustrate the methodology developed, the results of three reinforced concrete beams tested in the laboratory are analyzed and presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examines the role of interparticle cementation in the collapse behavior of two partly saturated (S-r = 4 to 12%) and very highly porous (initial void ratio = 1.5 to 2) laboratory-desiccated clayey silt specimens containing varying amounts (5 and 15% by dry weight of the respective specimens) of the cementitious iron oxides hematite and goethite, which are generally encountered in tropical residual soils. Kaolinite is the representative clay mineral of the soil matrix used for this research. Interparticle cementation by the crystalline iron oxides was generated in the laboratory by repeated (six times) wetting and drying of the iron-hydroxide-admixed clayey silt specimens under ambient conditions of temperature and humidity. Results showed that, for a given laboratory-desiccated clayey silt specimen (i.e., a specimen containing 5 or 15% of iron oxide on a dry weight basis), the amount of collapse (represented by Delta epsilon, the change in vertical strain upon wetting under constant pressure) increases with an increase in the experimental loading under which the specimen is inundated. The laboratory results also show that the desiccated specimen with a higher iron oxide content (containing 15% iron oxide by dry weight of the desiccated specimen) in spite of a lower dry unit weight (gamma(d) = 8.8 kN/m(3)) undergoes a lesser amount of collapse on soaking under a constant external stress (50 or 100 kPa) than the desiccated specimen with a lower iron oxide content (i.e., containing 5% iron oxide by dry weight of the desiccated specimen, gamma(d) = 10.4 KN/m(3)). Based on the X-ray diffraction results and the stress-strain relationships obtained from isotropically consolidated undrained triaxial tests, it is suggested that the laboratory-desiccated specimens are characterized by a metastable bonding provided by capillary suction and the crystalline iron oxides. On soaking under load owing to the loss of the metastable bonding, collapse of the laboratory-desiccated specimens occurs. Also, in the case of the laboratory-desiccated specimen with a higher iron oxide content, the presence of a stronger interparticle cementation (due to a greater abundance of crystalline iron oxides) and a higher initial moisture content are considered responsible for the specimen exhibiting a lower amount of collapse in comparison to that exhibited by the desiccated specimen with a lesser iron oxide content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles-e.g., from a ``cauliflower'' congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl-Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud- scale dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-component ferroelectric superlattices consisting of alternating layers of SrTiO3, BaTiO3, and CaTiO3 (SBC) with variable interlayer thickness were fabricated on Pt(111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of satellite reflections in x-ray-diffraction analysis and a periodic concentration of Sr, Ba, and Ca throughout the film in depth profile of secondary ion mass spectrometry analysis confirm the fabrication of superlattice structures. The Pr (remnant polarization) and Ps (saturation polarization) of SBC superlattice with 16.4-nm individual layer thickness (SBC16.4) were found to be around 4.96 and 34 μC/cm2, respectively. The dependence of polarization on individual layer thickness and lattice strain were studied in order to investigate the size dependence of the dielectric properties. The dielectric constant of these superlattices was found to be much higher than the individual component layers present in the superlattice configuration. The relatively higher tunability ( ∼ 55%) obtained around 300 K indicates that the superlattice is a potential electrically tunable material for microwave applications at room temperature. The enhanced dielectric properties were thus discussed in terms of the interfacial strain driven polar region due to high lattice mismatch and electrostatic coupling due to polarization mismatch between individual layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a rational approach to model the behavior of bonded soils within the frame work of hardening plasticity. The approach is based on the premise that the resistance of bonded materials is a superposition of the two components of cement bond strength and soil frictional strength and that the deformation of the soil is associated with the frictional component of stresses just as in the case of a remoulded soil, the bonds offering additional resistance at any given strain level. This concept is similar to two stiffnesses acting in parallel for the same strain response. The proposed model considers the constitutive laws separately for the two components (bond and frictional) and adds the two to get the overall response. The unbonded soil component is described by the well known 'modified Cam clay' model. The response of the bond component is also described by a strain softening elasto-plastic model, considering the behavior to be elastic up to the yield surface and elasto-plastic beyond yield surface. To illustrate the capability of the proposed, model some laboratory test results of both compression and-extension shear tests are predicted. Despite the model being simple, several typical features of the behavior of bonded materials are well reproduced. The model parameters are well defined and easily determinable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dominance and subordinate behaviors are important ingredients in the social organizations of group living animals. Behavioral observations on the two eusocial species Ropalidia marginata and Ropalidia cyathiformis suggest varying complexities in their social systems. The queen of R. cyathiformis is an aggressive individual who usually holds the top position in the dominance hierarchy although she does not necessarily show the maximum number of acts of dominance, while the R. marginata queen rarely shows aggression and usually does not hold the top position in the dominance hierarchy of her colony. In R. marginata, more workers are involved in dominance-subordinate interactions as compared to R. cyathiformis. These differences are reflected in the distribution of dominance-subordinate interactions among the hierarchically ranked individuals in both the species. The percentage of dominance interactions decreases gradually with hierarchical ranks in R. marginata while in R. cyathiformis it first increases and then decreases. We use an agent-based model to investigate the underlying mechanism that could give rise to the observed patterns for both the species. The model assumes, besides some non-interacting individuals, the interaction probabilities of the agents depend on their pre-differentiated winning abilities. Our simulations show that if the queen takes up a strategy of being involved in a moderate number of dominance interactions, one could get the pattern similar to R. cyathiformis, while taking up the strategy of very low interactions by the queen could lead to the pattern of R. marginata. We infer that both the species follow a common interaction pattern, while the differences in their social organization are due to the slight changes in queen as well as worker strategies. These changes in strategies are expected to accompany the evolution of more complex societies from simpler ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the effect of mechanical strain on the electrostrictive behavior of catalytically grown cellular structure of carbon nanotube (CNT). In the small strain regime, where the stress-strain behavior of the material is linear, application of an electric-field along the mechanical loading direction induces an instantaneous increase in the stress and causes an increase in the apparent Young's modulus. The instantaneous increase in the stress shows a cubic-polynomial dependence on the electric-field, which is attributed to the non-linear coupling of the mechanical strain and the electric-field induced polarization of the CNT. The electrostriction induced actuation becomes >100 times larger if the CNT sample is pre-deformed to a small strain. However, in the non-linear stress-strain regime, although a sharp increase in the apparent Young's modulus is observed upon application of an electric-field, no instantaneous increase in the stress occurs. This characteristic suggests that the softening due to the buckling of individual CNT compensates for any instantaneous rise in the electrostriction induced stress at the higher strains. We also present an analytical model to elucidate the experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESD behavior of metallic carbon nanotubes (CNTs) is explored. Unique TLP I-V characteristics and failure mechanism of carbon shells are discussed. ESD failure in CNTs is attributed to shell burning. It was found that CNT interconnect changes resistance in steps of fundamental quantum resistance (h/2e(2)) after individual shell burning.