327 resultados para C-AXIS FABRICS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Zn1−xMgxO (x = 0.3) thin films have been fabricated on Pt/TiO2/SiO2/Si substrates using multimagnetron sputtering technique. The films with wurtzite structure showed a (002) preferred orientation. Ferroelectricity in Zn1−xMgxO films was established from the temperature dependent dielectric constant and the polarization hysteresis loop. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 °C. The resistivity versus temperature characteristics showed an anomalous increase in the vicinity of the dielectric transition temperature. The Zn1−xMgxO thin films exhibit well-defined polarization hysteresis loop, with a remanent polarization of 0.2 μC/cm2 and coercive field of 8 kV/cm at room temperature.
Resumo:
Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 mu A to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (omega(0)) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
We present here a calculation of the inertial mass of a moving vortex in cuprate superconductors. This is a poorly known basic quantity of obvious interest in vortex dynamics. The motion of a vortex causes a dipolar density distortion and an associated electric field which is screened. The energy cost of the density distortion as well as the related screened electric field contributes to the vortex mass, which is small because of efficient screening. As a preliminary, we present a discussion and calculation of the vortex mass using a microscopically derivable phase-only action functional for the far region which shows that the contribution from the far region is negligible and that most of it arises from the (small) core region of the vortex. A calculation based on a phenomenological Ginzburg-Landau functional is performed in the core region. Unfortunately such a calculation is unreliable; the reasons for it are discussed. A credible calculation of the vortex mass thus requires a fully microscopic non-coarse-grained theory. This is developed, and results are presented for an s-wave BCS-like gap, with parameters appropriate to the cuprates. The mass, about 0.5m(e) per layer, for a magnetic field along the c axis arises from deformation of quasiparticle states bound in the core and screening effects mentioned above. We discuss earlier results, possible extensions to d-wave symmetry, and observability of effects dependent on the inertial mass. [S0163-1829(97)05534-3].
Resumo:
Magnetic susceptibility studies on single crystals of nearly stoichiometric La2NiO4 with the applied field both parallel and perpendicular to the c axis show a transition at 204 K below which two-dimensional canted antiferromagnetic order seems to exist. This oxide also undergoes a transition from isotropic to anisotropic susceptibility near 100 and 250 K.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
. Measurement of the relation between polarisation P and electric field E for lithium potassium sulphate (LiKSO4) was made in the low temperature range below room temperature. The P-E hysteresis loops along the c axis of LiKSO4 were observed in the low-temperature phase below the lower transition point Ttl of about -70 degrees C, and in the intermediate phase below the upper transition point Ttu of about -25 degrees C. These phases were found to be ferroelectric. The temperature dependence of the spontaneous polarisation Ps and the electric coercive field Ec were obtained.
Resumo:
Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.
Resumo:
In situ cryocrystallographic Studies of chloro and bromo substituted anilines have been performed to evaluate the role of halogen...halogen interactions and the subsequent formation of supramolecular assemblies in the solid state. Ortho Cl/Br substituted anilines are isostructural and belong to the trigonal P3(1) space group. Halogen...halogen intermolecular contacts along with stronger N-H center dot center dot center dot N hydrogen bonds generate helical motifs along the crystallographic c-axis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The title compound, C13H9Cl2N, has an intramolecular C-H center dot center dot center dot O close contact, and presents the NH group syn to the meta-chloro group in the aniline ring and trans to the C=O group. The crystal packing is formed by infinite chains of N-H center dot center dot center dot O hydrogen bonds along the c axis. Cl center dot center dot center dot Cl [3.474 (1) angstrom] contacts link chains. The crystal used for data collection was a twin, the domains related by the twin law 0.948 (1)/0.052 (1).
Resumo:
The molecular conformation of the title compound, C19H18O2, is stabilized by an intramolecular O-H-O hydrogen bond. In addition, intermolecular O-H-O interactions link the molecules into zigzag chains running along the c axis.
Resumo:
Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.