6 resultados para C(K)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Pion photoproduction processes14Ngs(gamma, pgr +)14C and14Ngs(gamma, pgr –)14O have been studied in the threshold region. These processes provide an excellent tool to study the corrections to soft pion theorems and Kroll-Ruderman limit as applied to nuclear processes. The agreement with the available experimental data for these processes is better with the empirical wave functions while the shell-model wave functions predict a much higher value. Detailed experimental studies of these reactions at threshold, it is shown, are expected to lead to a better understanding of the shell-model inputs and radial distributions in the 1p state. We thank Dr. S.C.K. Nair for a helpful discussion during the initial stages of this work. One of us (MVN) thanks Dr. J.M. Laget for sending some unpublished data on pion photoproduction. He is also thankful to Dr. J. Pasupathy and Dr. R. Rajaraman for their interest and encouragement.
Resumo:
The paper elucidates a simple way ooJ'dcriving the coordinates for &awing sfereo-&gram of molecules. This method is an alternative, but not a substitute, to the 'ORTEP (suggested by C. K. Johnsori) which, is extensively used in the literature. Illustrations are given using a progrunz which was written based on the method mentioned here. The program is also given in an appendix for practical help.
Resumo:
We consider a modification of the three-dimensional Navier-Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e(vertical bar k vertical bar/kd) at high wavenumbers vertical bar k vertical bar. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-(C(k/kd) ln(vertical bar k vertical bar/kd)) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C-* = 1/ ln 2. The same behavior with a universal constant C-* is conjectured for the Navier-Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier-Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
Resumo:
This paper is concerned with a study of some of the properties of locally product and almost locally product structures on a differentiable manifold X n of class C k . Every locally product space has certain almost locally product structures which transform the local tangent space to X n at an arbitrary point P in a set fashion: this is studied in Theorem (2.2). Theorem (2.3) considers the nature of transformations that exist between two co-ordinate systems at a point whenever an almost locally product structure has the same local representation in each of these co-ordinate systems. A necessary and sufficient condition for X n to be a locally product manifold is obtained in terms of the pseudo-group of co-ordinate transformations on X n and the subpseudo-groups [cf., Theoren (2.1)]. Section 3 is entirely devoted to the study of integrable almost locally product structures.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.