4 resultados para Butterflies

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.,Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis,while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Dispersal ability of a species is a key ecological characteristic, affecting a range of processes from adaptation, community dynamics and genetic structure, to distribution and range size. It is determined by both intrinsic species traits and extrinsic landscape-related properties. 2. Using butterflies as a model system, the following questions were addressed: (i) given similar extrinsic factors, which intrinsic species trait(s) explain dispersal ability? (ii) can one of these traits be used as a proxy for dispersal ability? (iii) the effect of interactions between the traits, and phylogenetic relatedness, on dispersal ability. 3. Four data sets, using different measures of dispersal, were compiled from published literature. The first data set uses mean dispersal distances from capture-mark-recapture studies, and the other three use mobility indices. Data for six traits that can potentially affect dispersal ability were collected: wingspan, larval host plant specificity, adult habitat specificity, mate location strategy, voltinism and flight period duration. Each data set was subjected to both unifactorial, and multifactorial, phylogenetically controlled analyses. 4. Among the factors considered, wingspan was the most important determinant of dispersal ability, although the predictive powers of regression models were low. Voltinism and flight period duration also affect dispersal ability, especially in case of temperate species. Interactions between the factors did not affect dispersal ability, and phylogenetic relatedness was significant in one data set. 5. While using wingspan as the only proxy for dispersal ability maybe problematic, it is usually the only easily accessible species-specific trait for a large number of species. It can thus be a satisfactory proxy when carefully interpreted, especially for analyses involving many species from all across the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersal ability of a species is central to its biology, affecting other processes like local adaptation, population and community dynamics, and genetic structure. Among the intrinsic, species-specific factors that affect dispersal ability in butterflies, wingspan was recently shown to explain a high amount of variance in dispersal ability. In this study, a comparative approach was adopted to test whether a difference in wingspan translates into a difference in population genetic structure. Two closely related butterfly species from subfamily Satyrinae, family Nymphalidae, which are similar with respect to all traits that affect dispersal ability except for wingspan, were studied. Melanitis leda (wingspan 60-80 mm) and Ypthima baldus (wingspan 30-40 mm) were collected from the same areas along the Western Ghats of southern India. Amplified fragment length polymorphisms were used to test whether the species with a higher wingspan (M. leda) exhibited a more homogenous population genetic structure, as compared to a species with a shorter wingspan (Y. baldus). In all analyses, Y. baldus exhibited greater degree of population genetic structuring. This study is one of the few adopting a comparative approach to establish the relationship between traits that affect dispersal ability and population genetic structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When the male is the heterogametic sex (XX♀-XY♂ or XX♀-XO♂), as inDrosophila, orthopteran insects, mammals andCaenorhabditis elegans, X-linked genes are subject to dosage compensation: the single X in the male is functionally equivalent to the two Xs in the female. However, when the female is heterogametic (ZZ♂-ZW♀), as in birds, butterflies and moths, Z-linked genes are apparently not dosage-compensated. This difference between X-linked and Z-linked genes raises fundamental questions about the role of dosage compensation. It is argued that (i) genes which require dosage compensation are primarily those that control morphogenesis and the prospective body plan; (ii) the products of these genes are required in disomic doses especially during oogenesis and early embryonic development; (iii) heterogametic females synthesize and store during oogenesis itself morphogenetically essential gene products - including those encoded by Z-linked genes — in large quantities; (iv) the abundance of these gene products in the egg and their persistence relatively late into embryogenesis enables heterogametic females to overcome the monosomic state of the Z chromosome in ZW embryos. Female heterogamety is predominant in birds, reptiles and amphibians, all of which have megalecithal eggs containing several thousand times more maternal RNA and other maternal messages than eggs of mammals,Caenorhabditis elegans, orDrosophila. This increase in egg size, yolk content and, concomitantly, the size of the maternal legacy to the embryo, may have facilitated female heterogamety and the absence of dosage compensation.