3 resultados para Burg, A.
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
The initial boundary value problem for the Burgers equation in the domain x greater-or-equal, slanted 0, t > 0 with flux boundary condition at x = 0 has been solved exactly. The behaviour of the solution as t tends to infinity is studied and the “asymptotic profile at infinity” is obtained. In addition, the uniqueness of the solution of the initial boundary value problem is proved and its inviscid limit as var epsilon → 0 is obtained.
Resumo:
We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.