65 resultados para Building energy simulations
em Indian Institute of Science - Bangalore - Índia
Resumo:
Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.
Resumo:
Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.
Resumo:
Rammed earth is a monolithic construction and the construction process involves compaction of processed soil in progressive layers in a rigid formwork. Durable and thinner load bearing walls can be built using stabilised rammed earth. Use of inorganic additives such as cement for rammed earth walls has been in practice since the last 5-6 decades and cement stabilised rammed earth (CSRE) buildings can be seen across the world. The paper deals with the construction aspects, structural design and embodied energy analysis of a three storey load bearing school building complex. The CSRE school complex consists of 15 classrooms, an open air theatre and a service block. The complex has a built-up area of 1691.3 m(2) and was constructed employing manual construction techniques. This case study shows low embodied energy of 1.15 GJ/m(2) for the CSRE building as against 3-4 GJ/m(2) for conventional burnt clay brick load bearing masonry buildings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Growing demand for urban built spaces has resulted in unprecedented exponential rise in production and consumption of building materials in construction. Production of materials requires significant energy and contributes to pollution and green house gas (GHG) emissions. Efforts aimed at reducing energy consumption and pollution involved with the production of materials fundamentally requires their quantification. Embodied energy (EE) of building materials comprises the total energy expenditure involved in the material production including all upstream processes such as raw material extraction and transportation. The current paper deals with EE of a few common building materials consumed in bulk in Indian construction industry. These values have been assessed based on actual industrial survey data. Current studies on EE of building materials lack agreement primarily with regard to method of assessment and energy supply assumptions (whether expressed in terms of end use energy or primary energy). The current paper examines the suitability of two basic methods; process analysis and input-output method and identifies process analysis as appropriate for EE assessment in the Indian context. A comparison of EE values of building materials in terms of the two energy supply assumptions has also been carried out to investigate the associated discrepancy. The results revealed significant difference in EE of materials whose production involves significant electrical energy expenditure relative to thermal energy use. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (L-alpha) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the L-alpha phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the L-alpha phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.
Resumo:
Using excited-state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field approach, we study the mechanism of photodissociation in terms of time evolution of structure, kinetic energy, charges and potential energy for the first excited state of hydrogen halides and methyl halides. Although the hydrogen halides and methyl halides are similar in the photodissociation mechanism, their dynamics are slightly different. The presence of the methyl group causes delay in photodissociation as compared to hydrogen halides.
Resumo:
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Resumo:
Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.