11 resultados para Buarque, Chico, 1944 - . Budapeste
em Indian Institute of Science - Bangalore - Índia
Resumo:
Mr=300.33 , triclinic, P1, a=5.635 (2), b=11.077(2), c=11.582(2)A, a= 70.48 (1), fl= 88.16 (3), y=80.56(3) ° , V= 670.325 A3, Z=2, D x = 1.49 Mg m -3, Cu Ka, n= 1.54184 ,A, g = 2.308mm -1, F(000)=316, T=301K, R=0.054, R w = 0.093 for 1944 observed counter reflections. The sulphur position with respect to the dihydrouracil ring, which is of possible relevance to the action of thymidylate synthetase, is axial in molecule A and equatorial in B. Both molecules show the anti conformation about the glycosidic bond [torsion angle C(6)-N(1)-C(1')-O(4'), 2'CN = 21.6 (9) and 29.4 (10) °] and have the C(4')-endo, O(4')-exo (40T) sugar conformation. The dioxolane-ring conformation is O(2')-endo in A and C(7)-endo in B. The dihydrouracil rings show self base pairing with hydrogen bondsN(3A)...O(ZB) and N(3B)...O(ZA).
Resumo:
DURING recent years, there has been increasing amount of evidence regarding the importance of protozoa in the aerobic purification of sewage1–4 and, more recently, some quantitative observations on protozoa in determining the condition of sludge and quality of effluent have been recorded5–10. The evidence so far obtained has, however, been only indirect, chiefly owing to the difficulty in separating the protozoa from the associated bacteria. This has now been achieved and the object of this note is to show that the isolated protozoa can bring about practically all the changes associated with the purification. The part played by the bacteria is almost negligible.
Resumo:
Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.
Resumo:
The novel alkyllithium 1b is not only intriguingly stable towards fragmentation, but also a synthetically useful reagent, complementing current carboxylic ester enolate methodology. Its design is based on interesting mechanistic principles, and harnesses the known stability of the 2,4,10-trioxaadamantane framework.
Resumo:
This paper considers a multi-person discrete game with random payoffs. The distribution of the random payoff is unknown to the players and further none of the players know the strategies or the actual moves of other players. A class of absolutely expedient learning algorithms for the game based on a decentralised team of Learning Automata is presented. These algorithms correspond, in some sense, to rational behaviour on the part of the players. All stable stationary points of the algorithm are shown to be Nash equilibria for the game. It is also shown that under some additional constraints on the game, the team will always converge to a Nash equilibrium.
Resumo:
The variation in the exponent s in σa.c. agr ωs as a function of temperature is reported for lithium thioborate glasses. The origin of the observed minimum in s is discussed using the diffusion-controlled relaxation (DCR) model. An entirely new model for the a.c. conductivity of highly modified ionic glasses has been proposed and expressions for relaxation identical with those of the DCR model have been obtained, providing a new explanation for the temperature behaviour of s. The origin of two activation barriers generally observed in a.c. conductivity studies is examined in the light of the new model.
Resumo:
This paper considers the design and analysis of a filter at the receiver of a source coding system to mitigate the excess Mean-Squared Error (MSE) distortion caused due to channel errors. It is assumed that the source encoder is channel-agnostic, i.e., that a Vector Quantization (VQ) based compression designed for a noiseless channel is employed. The index output by the source encoder is sent over a noisy memoryless discrete symmetric channel, and the possibly incorrect received index is decoded by the corresponding VQ decoder. The output of the VQ decoder is processed by a receive filter to obtain an estimate of the source instantiation. In the sequel, the optimum linear receive filter structure to minimize the overall MSE is derived, and shown to have a minimum-mean squared error receiver type structure. Further, expressions are derived for the resulting high-rate MSE performance. The performance is compared with the MSE obtained using conventional VQ as well as the channel optimized VQ. The accuracy of the expressions is demonstrated through Monte Carlo simulations.
Resumo:
Today 80 % of the content on the Web is in English, which is spoken by only 8% of the World population and 5% of Indian population. There is wealth of useful content in the various languages of the world other than English, which can be made available on the Internet. But, to date, for various reasons most of it is not yet available on the Internet. India itself has 18 officially recognized languages and scores of dialects. Although the medium of instruction for most of the higher education and research in India is English, substantial amount of literature by way of novels, textbooks, scholarly information are being generated in the other languages in the country. Many of the e-governance initiatives are in the respective state languages. In the past, support for different languages by the operating systems and the software packages were not very encouraging. However, with the advent of Unicode technology, operating systems and software packages are supporting almost all the major languages of the world that have scripts. In the work reported in this paper, we have explained the configuration changes that are needed for Eprints.org software to store multilingual content and to create a multilingual user interface.
Resumo:
In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.