118 resultados para Breast imaging
em Indian Institute of Science - Bangalore - Índia
Resumo:
The study of non-invasive characterization of elastic properties of soft biological tissues has been a focus of active researches since recent years. Light is highly scattered by biological tissues and hence, sophisticated reconstruction algorithms are required to achieve good imaging depth and a reasonable resolution. Ultrasound (US), on the otherhand, is less scattered by soft tissues and it has been in use for imaging in biomedical ultrasound systems. Combination of the contrast sensitivity of light and good localization of ultrasound provides a challenging technique for characterization of thicker tissues deep inside the body non-invasively. The elasticity of the tissues is characterized by studying the response of tissues to mechanical excitation induced by an acoustic radiation force (remotely) using an optical laser. The US modulated optical signals which traverse the tissue are detected by using a CCD camera as detector array and the pixel map formed on the CCD is used to characterize the embedded inhomogeneities. The use of CCD camera improves the signal-noise-ratio (SNR) by averaging the signals from all of the CCD pixels.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
The diffusion equation-based modeling of near infrared light propagation in tissue is achieved by using finite-element mesh for imaging real-tissue types, such as breast and brain. The finite-element mesh size (number of nodes) dictates the parameter space in the optical tomographic imaging. Most commonly used finite-element meshing algorithms do not provide the flexibility of distinct nodal spacing in different regions of imaging domain to take the sensitivity of the problem into consideration. This study aims to present a computationally efficient mesh simplification method that can be used as a preprocessing step to iterative image reconstruction, where the finite-element mesh is simplified by using an edge collapsing algorithm to reduce the parameter space at regions where the sensitivity of the problem is relatively low. It is shown, using simulations and experimental phantom data for simple meshes/domains, that a significant reduction in parameter space could be achieved without compromising on the reconstructed image quality. The maximum errors observed by using the simplified meshes were less than 0.27% in the forward problem and 5% for inverse problem.
Resumo:
The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America
Resumo:
The ligand glyoxal bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH2) is shown to be a selective fluorescence turn-on sensor for zinc ions (Zn2+). This sensor is easy to synthesize, exhibits excellent sensitivity and selectivity towards Zn2+ over other physiologically relevant cations, and has sub-nanomolar binding affinity. It displays maximum fluorescence response to Zn2+ when the metal/ligand ratio is 1:1 and displays stable fluorescence over a broad pH range. The potential of GTSCH2 to image Zn2+ inside the cell was demonstrated in MCF-7 cells (human breast cancer cell line) by using flow cytometry and confocal fluorescence microscopy. Cell viability studies reveal that the probe is biocompatible and suitable for cellular applications.
Resumo:
A new benzoyl hydrazone based chemosensor R is synthesized by Schiff base condensation of 2,6-diformyl-4-methylphenol and phenyl carbohydrazide and acts as a highly selective fluorescence sensor for Cu2+ and Zn2+ ions in aqueous media. The reaction of R with CuCl2 or ZnCl2 forms the corresponding dimeric dicopper(II) Cu-2(R)(CH3O)-(NO3)](2)(CH3O)(2) (R-Cu2+) and dizinc(1) Zn-2(R)(2)](NO3)(2) (R-Zn2+) complexes, which are characterized, as R, by conventional techniques including single-crystal X-ray analysis. Electronic absorption and fluorescence titration studies of R with different metal cations in a CH3CN/0.02 M HEPES buffer medium (pH = 7.3) show a highly selective binding affinity only toward Cu(2+)and Zn2+ ions even in the presence of other commonly coexisting ions such as Ne+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cd2+, and Hg2+. Quantification of the fluorescence titration analysis shows that the chemosensor R can indicate the presence of Cu2+ and Zn2+ even at very low concentrations of 17.3 and 16.5 ppb, respectively. R-Zn2+ acts as a selective metal-based fluorescent sensor for inorganic pyrophosphate ion (PPi) even in the presence of other common anions such as F-, Cl-, Br-, I-, CH3COO-, CO32-, HCO3-, N-3(-), SO42-, PPi, AMP, ADP, and ATP in an aqueous medium. The propensity of R as a bioimaging fluorescent probe to detect Cu2+ and Zn2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against human cervical (HeLa), breast cancer (MCF7), and noncancer breast epithelial (MCF10a) cells have also been investigated. R-Cu2+ shows better cytotoxicity and sensitivity toward cancer cells over noncancer cells than R and R-Zn2+ under identical conditions, with the appearance of apoptotic bodies.
Resumo:
The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.
Resumo:
Digital holography is the direct recording of holograms using a CCD camera and is an alternative to the use of a film or a plate. In this communication in-line digital holographic microscopy has been explored for its application in particle imaging in 3D. Holograms of particles of about 10 mu m size have been digitally reconstructed. Digital focusing was done to image the particles in different planes along the depth of focus. Digital holographic particle imaging results were compared with conventional optical microscope imaging. A methodology for dynamic analysis of microparticles in 3D using in-line digital holography has been proposed.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
We study by means of experiments and Monte Carlo simulations, the scattering of light in random media, to determine the distance up to which photons travel along almost undeviated paths within a scattering medium, and are therefore capable of casting a shadow of an opaque inclusion embedded within the medium. Such photons are isolated by polarisation discrimination wherein the plane of linear polarisation of the input light is continuously rotated and the polarisation preserving component of the emerging light is extracted by means of a Fourier transform. This technique is a software implementation of lock-in detection. We find that images may be recovered to a depth far in excess of that predicted by the diffusion theory of photon propagation. To understand our experimental results, we perform Monte Carlo simulations to model the random walk behaviour of the multiply scattered photons. We present a. new definition of a diffusing photon in terms of the memory of its initial direction of propagation, which we then quantify in terms of an angular correlation function. This redefinition yields the penetration depth of the polarisation preserving photons. Based on these results, we have formulated a model to understand shadow formation in a turbid medium, the predictions of which are in good agreement with our experimental results.
Resumo:
Micro-Raman imaging of the distribution of Te precipitates in CdZnTe crystals in different phases is reported. For the normal phase of Te precipitates, the Raman modes appear centered around 121(A1), 141(E)/TO(CdTe) cm−1 and a weak mode around 92(E) cm−1 in CdZnTe indicating the presence of trigonal lattice of Te. Under high pressure phase, the volume of Te precipitates collapses, giving more bond energy resulting in the blueshift of the corresponding Raman bands. Also, the spatial distribution of the area ratio of 121 to 141 cm−1 Raman modes is used to quantify Te precipitates. Further, near-infrared microscopy images support these results.
Resumo:
A new photothermal imaging process which utilizes no silver has been demonstrated in obliquely deposited Se-Ge films. Band-gap irradiation of Se-Ge films has been found to give rise to phases of the type SeOx, GeO, and Se as borne by x-ray initiated Auger electron spectroscopy and x-ray photoelectron spectroscopy. Annealing of SeOx leads to the formation of SeO2. The large (several orders of magnitude) difference in vapor pressures of SeO2 and Se-Ge films results in differential evaporation of the films when annealed around 200 °C, thereby leading to imaging. Such a large contrast in evaporation rates between the exposed and unexposed regions has great potential applications in high resolution image storage and phase holography. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
Through an analysis using the transfer function of a pinhole camera, the multiple imaging characteristics of photographic diffusers described by Grover and Tremblay [Appl. Opt.21,4500(1982)] is studied. It is found that only one pinhole diameter satisfies the optimum imaging condition for best contrast transfer at any desired spatial frequency. A simple method of generating random pinhole arrays with a controlled pinhole diameter is described. These pinhole arrays are later used to generate high frequency sinusoidal gratings from a coarse grid. The contrast in the final gratings is found to be reasonably high.
Resumo:
5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.