10 resultados para Bourses de fret

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) and copper(I) complexes of a newly designed and crystallographically characterized Schiff base (HL) derived from rhodamine hydrazide and cinnamaldehyde were isolated in pure form formulated as Cu(L)(NO3)] (L-Cu) (1) and Cu(HL)(CH3CN)(H2O)]ClO4 (HL-Cu) (2), and characterized by physicochemical and spectroscopic tools. Interestingly, complex 1 but not 2 offers red fluorescence in solution state, and eventually HL behaves as a Cu(II) ions selective FRET based fluorosensor in HEPES buffer (1 mM, acetonitrile-water: 1/5, v/v) at 25 degrees C at biological pH with almost no interference of other competitive ions. The dependency of the FRET process on the +2 oxidation state of copper has been nicely supported by exhaustive experimental studies comprising electronic, fluorimetric, NMR titration, and theoretical calculations. The sensing ability of HL has been evaluated by the LOD value towards Cu(II) ions (83.7 nM) and short responsive time (5-10 s). Even the discrimination of copper(I) and copper(II) has also been done using only UV-Vis spectroscopic study. The efficacy of this bio-friendly probe has been determined by employing HL to detect the intercellular distribution of Cu(II) ions in HeLa cells by developing image under fluorescence microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution of fluorescence resonance energy transfer (FRET) efficiency between the two ends of a Lennard-Jones polymer chain both at equilibrium and during folding and unfolding has been calculated, for the first time, by Brownian dynamics simulations. The distribution of FRET efficiency becomes bimodal during folding of the extended state subsequent to a temperature quench, with the width of the distribution for the extended state broader than that for the folded state. The reverse process of unfolding subsequent to a upward temperature jump shows different characteristics. The distributions show significant viscosity dependence which can be tested against experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brownian dynamics (BD) simulations have been carried out to explore the effects of the orientational motion of the donor-acceptor (D-A) chromophore pair on the Forster energy transfer between the D-A pair embedded in a polymer chain in solution. It is found that the usually employed orientational averaging (that is, replacing the orientational factor, kappa, by kappa (2) = 2/3) may lead to an error in the estimation of the rate of the reaction by about 20%. In the limit of slow orientational relaxation, the preaveraging of the orientational factor leads to an overestimation of the rate, while in the opposite limit of very fast orientational relaxation, the usual scheme underestimates the rate. The latter results from an interesting interplay between reaction and diffusion. On the other hand, when one of the chromophores is fixed, the preaveraged rate is found to be fairly reliable if the rotational relaxation of the chromophore is sufficiently fast. The present study also reveals a power law dependence of the FRET rate on the chain length (rate proportional to N- alpha, with alpha approximate to 2.6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the synthesis of CdSe magic-sized clusters (MSCs) and their evolution into 1D rod and wires retaining the diameter of the order of MSCs. At the beginning of the reaction, different classes of stable MSCs with band gaps of 3.02 eV and 2.57 eV are formed, which exhibit sharp band edge photoluminescence features with FWHM in the order of similar to 13 nm. Reaction annealing time was carried out in order to monitor the shape evolution of the MSCs. We find that magic sized CdSe evolve into 1D rod and wires retaining the same diameter upon increasing annealing time. We observed the gradual emergence of new red shifted emission peaks during this shape evolution process, which emerge as a result of one dimensional energy transfer within the magic sized clusters during their subsequent transformation into rods and wires. The smallest, the second smallest sized MSC and the wires sequentially act as donors and acceptors during the size evolution from small MSCs to larger ones, and then eventually to wires. Steady-state and time-resolved luminescent spectroscopy revealed Forster resonance energy transfer (FRET) between the MSCs to the rods and wires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small-angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst phase of folding, we find that FRET experiments overestimate radius of gyration, R-g, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract R-g from the FRET efficiency. FRET experiments estimate approximate to 6 angstrom decrease in R-g when the actual decrease is approximate to 3 angstrom on guanidinium chloride denaturant dilution from 7.5 to 1 M, thereby suggesting pronounced compaction in the protein dimensions in the burst phase. The approximate to 3 angstrom decrease is close to the statistical uncertainties of the R-g data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition-state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the Psi-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depends on protein topology and is not stabilized by local interactions alone.