360 resultados para Boundary-line

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perovskite structure in Pb(Zn1/3Nb2/3)O3 can be stabilized by the addition of Pb(Ni1/3Nb2/3)O3 and PbTiO3.Pb(Ni1/3Nb2/3)O3 assists in lowering the sintering temperature and shifting the Curie temperature of ceramics while PbTiO3 helps to optimize the dielectric properties. The phase stability and dielectric properties of several compositions in the Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 ternary relaxor ferroelectric system were investigated for possible capacitor applications. The effect of calcining and sintering temperature on the stability of perovskite phase in PZN rich compositions was studied extensively as a function of composition. The boundary line separating perovskite and mixed phases was determined for compositions near PZN. Several compositions can be sintered below 1050°C. The dielectric properties of compositions near the mixed phase boundary showed strong dependence on the percentage of pyrochlore phase. Compositions with a dielectric constant of 12.500 at room temperature have been identified which meet Z5T and Y5U specifications for dielectric constant and tan δ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsteady laminar incompressible boundary-layer attachment-line flow on a flat plate with attached cylinder with heat and mass transfer has been studied when the free stream velocity, mass transfer and surface wall temperature vary arbitrarily with time. The governing partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme. The heat transfer was found to be strongly dependent on the Prandtl number, variation of wall temperature with time and dissipation parameter (for large times). However, the free stream velocity distribution and mass transfer affect both the heat transfer and skin friction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The components of EHV/UHV lines and substations can produce significant corona. To limit the consequent Radio Interference and Audible Noise on these systems, suitable corona control rings are employed. The shapes of these rings could vary from circular to rectangular with smooth bends. Many manufacturers seem to adopt trial and error method for arriving at the final design. As such neither the present testing standard nor the final design adopted consider the practical scenario like corona produced by deposition of dirt, bird droppings, etc. The present work aims to make a first step in addressing this practically important problem. This requires an accurate evaluation of the electric field and a reliable method for the evaluation of corona inception. Based on a thorough survey of pertinent literature, the critical avalanche criteria as applicable to large electrodes, has been adopted. Taking the rain drop on the surface as the biggest protrusion, conducting protrusions modeled as semi-ellipsoid is considered as representative for deposition of dust or the boundary of bird droppings etc. Through examples of 4 00 kV and 765 kV class toroidal corona rings, the proposed method is demonstrated. This work is believed to be useful to corona ring manufacturers for EHV/UHV systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holography is the direct recording of holograms using a CCD camera and is an alternative to the use of a film or a plate. In this communication in-line digital holographic microscopy has been explored for its application in particle imaging in 3D. Holograms of particles of about 10 mu m size have been digitally reconstructed. Digital focusing was done to image the particles in different planes along the depth of focus. Digital holographic particle imaging results were compared with conventional optical microscope imaging. A methodology for dynamic analysis of microparticles in 3D using in-line digital holography has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow, heat and mass transfer on the unsteady laminar incompressible boundary layer in micropolar fluid at the stagnation point of a 2-dimensional and an axisymmetric body have been studied when the free stream velocity and the wall temperature vary arbitrarily with time. The partial defferential equations governing the flow have been solved numerically using a quasilinear finite-difference scheme. The skin friction, microrotation gradient and heat transfer parameters are found to be strongly dependent on the coupling parameter, mass transfer and time, whereas the effect of the microrotation parameter on the skin friction and heat transfer is rather weak, but microrotation gradient is strongly affected by it. The Prandtl number and the variation of the wall temperature with time affect the heat-transfer very significantly but the skin friction and micrortation gradient are unaffected by them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of attachment) has been studied. The equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of attachment but employing a parametric differentiation technique instead of quasilinearization for saddle points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse flow as well as velocity overshoot.