11 resultados para Boris Vian

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H-2-molecules. The average binding energy of similar to 0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H-2 storage (similar to 8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic, magnetic, and structural properties of graphene flakes depend sensitively upon the type of edge atoms. We present a simple software tool for determining the type of edge atoms in a honeycomb lattice. The algorithm is based on nearest neighbor counting. Whether an edge atom is of armchair or zigzag type is decided by the unique pattern of its nearest neighbors. Particular attention is paid to the practical aspects of using the tool, as additional features such as extracting out the edges from the lattice could help in analyzing images from transmission microscopy or other experimental probes. Ultimately, the tool in combination with density-functional theory or tight-binding method can also be helpful in correlating the properties of graphene flakes with the different armchair-to-zigzag ratios. Program summary Program title: edgecount Catalogue identifier: AEIA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66685 No. of bytes in distributed program, including test data, etc.: 485 381 Distribution format: tar.gz Programming language: FORTRAN 90/95 Computer: Most UNIX-based platforms Operating system: Linux, Mac OS Classification: 16.1, 7.8 Nature of problem: Detection and classification of edge atoms in a finite patch of honeycomb lattice. Solution method: Build nearest neighbor (NN) list; assign types to edge atoms on the basis of their NN pattern. Running time: Typically similar to second(s) for all examples. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen storage in the three-dimensional carbon foams is analyzed using classical grand canonical Monte Carlo simulations. The calculated storage capacities of the foams meet the material-based DOE targets and are comparable to the capacities of a bundle of well-separated similar diameter open nanotubes. The pore sizes in the foams are optimized for the best hydrogen uptake. The capacity depends sensitively on the C-H-2 interaction potential, and therefore, the results are presented for its ``weak'' and ``strong'' choices, to offer the lower and upper bounds for the expected capacities. Furthermore, quantum effects on the effective C-H-2 as well as H-2-H-2 interaction potentials are considered. We find that the quantum effects noticeably change the adsorption properties of foams and must be accounted for even at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quest for novel two-dimensional materials has led to the discovery of hybrids where graphene and hexagonal boron nitride (h-BN) occur as phase-separated domains. Using first-principles calculations, we study the energetics and electronic and magnetic properties of such hybrids in detail. The formation energy of quantum dot inclusions (consisting of n carbon atoms) varies as 1/root n, owing to the interface. The electronic gap between the occupied and unoccupied energy levels of quantum dots is also inversely proportional to the length scale, 1/root n-a feature of confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BN matrix and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied ``compensating'' electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different bond length relaxations at the interfaces, and decreasing with the width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyse in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter-independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter-independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wavefunctions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter-independent symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of similar to 0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed similar to 8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We observe linewidths below the natural linewidth for a probe laser on a degenerate two-level F -> F' transition, when the same transition is driven by a strong control laser. We take advantage of the fact that each level of the transition is made of multiple magnetic sublevels, and use the phenomenon of electromagnetically induced transparency (EIT) or absorption ( EIA) in multilevel systems. Optical pumping by the control laser redistributes the population so that only a few sublevels contribute to the probe absorption, an explanation which is verified by a density-matrix analysis of the relevant sublevels. We observe more than a factor of 3 reduction in linewidth in the D(2) line of Rb in room-temperature vapor. Such subnatural features vastly increase the scope of applications of EIT, such as high-resolution spectroscopy and tighter locking of lasers to atomic transitions, since it is not always possible to find a suitable third level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Gamma point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.