16 resultados para Book auctions

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we design a novel auction which we call the OPT (optimal) auction. The OPT mechanism maximizes the search engine's expected revenue while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We show that the OPT mechanism is superior to two of the most commonly used mechanisms for sponsored search namely (1) GSP (Generalized Second Price) and (2) VCG (Vickrey-Clarke-Groves). We then show an important revenue equivalence result that the expected revenue earned by the search engine is the same for all the three mechanisms provided the advertisers are symmetric and the number of sponsored slots is strictly less than the number of advertisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our attention, is focused on designing an optimal procurement mechanism which a buyer can use for procuring multiple units of a homogeneous item based on bids submitted by autonomous, rational, and intelligent suppliers. We design elegant optimal procurement mechanisms for two different situations. In the first situation, each supplier specifies the maximum quantity that can be supplied together with a per unit price. For this situation, we design an optimal mechanism S-OPT (Optimal with Simple bids). In the more generalized case, each supplier specifies discounts based on the volume of supply. In this case, we design an optimal mechanism VD-OPT (Optimal with Volume Discount, bids). The VD-OPT mechanism uses the S-OPT mechanism as a building block. The proposed mechanisms minimize the cost to the buyer, satisfying at the same time, (a) Bayesian, incentive compatibility and (b) interim individual rationality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Thomé's procedure, the asymptotic solutions of the Frieman and Book equation for the two-particle correlation in a plasma have been obtained in a complete form. The solution is interpreted in terms of the Lorentz distance. The exact expressions for the internal energy and pressure are evaluated and they are found to be a generalization of the result obtained earlier by others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pay-per click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their ads. This auction is typically conducted for a number of rounds (say T). There are click probabilities mu_ij associated with agent-slot pairs. The search engine's goal is to maximize social welfare, for example, the sum of values of the advertisers. The search engine does not know the true value of an advertiser for a click to her ad and also does not know the click probabilities mu_ij s. A key problem for the search engine therefore is to learn these during the T rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced and would be referred to as multi-armed-bandit (MAB) mechanisms. When m = 1,characterizations for truthful MAB mechanisms are available in the literature and it has been shown that the regret for such mechanisms will be O(T^{2/3}). In this paper, we seek to derive a characterization in the realistic but nontrivial general case when m > 1 and obtain several interesting results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bid optimization is now becoming quite popular in sponsored search auctions on the Web. Given a keyword and the maximum willingness to pay of each advertiser interested in the keyword, the bid optimizer generates a profile of bids for the advertisers with the objective of maximizing customer retention without compromising the revenue of the search engine. In this paper, we present a bid optimization algorithm that is based on a Nash bargaining model where the first player is the search engine and the second player is a virtual agent representing all the bidders. We make the realistic assumption that each bidder specifies a maximum willingness to pay values and a discrete, finite set of bid values. We show that the Nash bargaining solution for this problem always lies on a certain edge of the convex hull such that one end point of the edge is the vector of maximum willingness to pay of all the bidders. We show that the other endpoint of this edge can be computed as a solution of a linear programming problem. We also show how the solution can be transformed to a bid profile of the advertisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a key problem faced by advertisers in sponsored search auctions on the web: how much to bid, given the bids of the other advertisers, so as to maximize individual payoffs? Assuming the generalized second price auction as the auction mechanism, we formulate this problem in the framework of an infinite horizon alternative-move game of advertiser bidding behavior. For a sponsored search auction involving two advertisers, we characterize all the pure strategy and mixed strategy Nash equilibria. We also prove that the bid prices will lead to a Nash equilibrium, if the advertisers follow a myopic best response bidding strategy. Following this, we investigate the bidding behavior of the advertisers if they use Q-learning. We discover empirically an interesting trend that the Q-values converge even if both the advertisers learn simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.