37 resultados para Blue Tiger Battalion
em Indian Institute of Science - Bangalore - Índia
Resumo:
The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.
Resumo:
Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5, 10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. The Ki values obtained by kinetic methods and the Kd value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0·9-1·2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.
Resumo:
Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.
Resumo:
M r=670.02, monoclinic, C2/c, a= 31.003(4), b=11.037(2), c=21.183(3)A, fl= 143.7 (1) °, V= 4291.2/k 3, D,n = 2.06, D x = 2.07Mgm -3, Z=8, MoKa, 2=0.7107/k, /~=7.45 mm -1, F(000) = 2560, T= 293 K, R = 0.061 for 1697 observed reflections. The bromphenol blue molecule consists essentially of three planar groupings: the sulfonphthalein ring system and two dibromophenol rings attached to the tetrahedral C atom of the five-membered ring of the sulfonphthalein system. The dibromophenol rings are inclined with resPect to each other at 73 ° whereas they make angles of 85 and 68 ° with respect to the sulfonphthalein system. The molecules aggregate into helical columns with the non-polar regions of the molecules in the interior and the polar regions on the surface. The columns are held together by a network of hydrogen bonds.
Resumo:
The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
This communication highlights unstable blue-green emitting Cu doped ZnSe nanocrystals stabilized by diluting the surface Se with a calculated amount of S.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
A systematic investigation has been carried out into the optimization of diffraction efficiency (η) of methylene blue sensitized dichromated gelatin (MBDCG) holograms. The influence of the following parameters on η have been studied: prehardener concentration (CH), concentrations of ammonium dichromate (CA) and methylene blue (CM) as photosensitizers, and exposure (E). This study revealed that with CH similar, equals 0.5, CA similar, equals 30, CM similar, equals 0.3, and E similar, equals 400–600, optimum diffraction efficiency of over 80%, can be easily achieved in MBDCG holograms.
Resumo:
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 mu M. Kinetic analyses revealed that at a concentration below 0.5 mu M the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (K-a) and stoichiometry (r) for the enzyme-dye complex.
Resumo:
An experimental study to ascertain the role of external electron donor in methylene blue sensitized dichromated gelatin (MBDCG) holograms has been carried out. The required volume holographic transmission gratings in MBDCG have been recorded using 633-nm light from a He-Ne laser. Three well-known electron donors, namely, N, N-dimethylformamide (DMF); ethylenediaminetetraacetic acid (EDTA); triethanolamine (TEA), were used in this study. The variation of diffraction efficiency (η) as a function of light exposure (E) and concentration (C) of the electron donor under consideration was chosen as the figure of merit for judging the role of external electron donor in MBDCG holograms. A self-consistent analysis of the experimental results was carried out by recalling the various known facts about the photochemistry and the hologram formation in DSDCG and also DCG. The important findings and conclusions are as follows: (i) Each η vs E graph is a bell-shaped curve and its peak height is influenced in a characteristic manner by the external electron donor used. (ii) High diffraction efficiency/recording speed can be achieved in pure MBDCG holograms. (iii) The diffraction efficiency/recording speed achieved in electron donor sensitized MBDCG holograms did not show any significant improvement at all over that observed in pure MBDCG holograms. (iv) In electron donor sensitized MBDCG holograms, the electron donor used, depending on its type and concentration, appears to promote the process of cross-linking of gelatin molecules in a manner to either retain or deteriorate the refractive-index modulation achieved using pure MBDCG.
Resumo:
The results of an experimental investigation on the storage life and reprocessibility of methylene blue sensitized dichromated gelatin (MBDCG) holograms are reported. The major conclusions of the investigation are: (i) Storage of MBDCG holograms in normal laboratory conditions for long periods is possible and it diminishes somewhat their diffraction efficiency. (ii) The results on short time storage and long time storage are almost similar, thus indicating that the diffraction efficiency can be stabilized through storage in a relatively short period of time. (iii) The deterioration in the diffraction efficiency on storage is less [D(eta) < 20%] for gratings of low/medium initial efficiency (eta < 70%) and it is more for gratings of high initial efficiency. (iv) About 65-95% restoration of the diffraction efficiency can be accomplished through reprocessing. (v) The restoration of diffraction efficiency is almost perfect [R(eta) > 80%] for gratings of low/medium initial efficiency (eta <75%) whereas it is rather imperfect for gratings having high initial efficiency.