18 resultados para Black Holes, Laws of Black Hole dynamics, Global methods, Hawking radiation, Nonsingular Black Holes, Entanglement Entropy

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the renormalized entanglement entropy (REE) for BPS black solutions in N = 2, four-dimensional gauged supergravity. We find that this quantity decreases monotonically with the size of the entangling region until it reaches a critical point, then increases and approaches the entropy density of the brane. This behavior can be understood as a consequence of the renormalized entanglement entropy being driven by two competing factors, namely, entanglement and the mixedness of the black brane. In the UV, entanglement dominates, whereas in the IR, the mixedness takes over.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the thermopower (S) of hole-doped LaMnO3 systems in order to see its dependence on the Mn4+ content as well as to investigate other crucial factors that determine S. We have carried out hole doping (creation of Mn4+ by two distinct means, namely, by the substitution of La by divalent cations such as Ca and Sr and by self-doping without aliovalent substitution). The thermopower is sensitive not only to the hole concentration but also to the process employed for hole doping, which we explain as arising from the differences in the nature of the hole-doped states. We also point out a general trend in the dependence of S on hole concentration at high temperatures (T> T-c), similar to that found in the normal-state thermopower of the cuprates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric phase transition in ammonium sulfate has been studied by ESR of CrO43- radical substituting for SO42- ion in (NH4)2SO4. In addition to discontinuous changes at Tc, certain continuous changes are observed in ESR parameters of this probe below Tc, which reflect the role of the sulfate ion in the phase transition. A microscopic mechanism of the phase transition is proposed and discussed in terms of the change of orientation of the sulfate tetrahedron through a finite angle. The degree of the change of orientation below Tc is thought to be the possible order parameter of the phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetotransport measurements in pulsed fields up to 15 T have been performed on mercury cadmium telluride (Hg1-xCdxTe, x similar to 0.2) bulk as well as liquid phase epitaxially grown samples to obtain the resistivity and conductivity tensors in the temperature range 220-300 K. Mobilities and densities of various carriers participating in conduction have been extracted using both conventional multicarrier fitting (MCF) and mobility spectrum analysis. The fits to experimental data, particularly at the highest magnetic fields, were substantially improved when MCF is applied to minimize errors simultaneously on both resistivity and conductivity tensors. The semiclassical Boltzmann transport equation has been solved without using adjustable parameters by incorporating the following scattering mechanisms to fit the mobility: ionized impurity, polar and nonpolar optical phonons, acoustic deformation potential, and alloy disorder. Compared to previous estimates based on the relaxation time approximation with outscattering only, polar optical scattering and ionized impurity scattering limited mobilities are shown to be larger due to the correct incorporation of the inscattering term taking into account the overlap integrals in the valence band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of steady-state flows in radiation-gas-dynamics, when radiation pressure is negligible in comparison with gas pressure, can be reduced to the study of a single first-order ordinary differential equation in particle velocity and radiation pressure. The class of steady flows, determined by the fact that the velocities in two uniform states are real, i.e. the Rankine-Hugoniot points are real, has been discussed in detail in a previous paper by one of us, when the Mach number M of the flow in one of the uniform states (at x=+∞) is greater than one and the flow direction is in the negative direction of the x-axis. In this paper we have discussed the case when M is less than or equal to one and the flow direction is still in the negative direction of the x-axis. We have drawn the various phase planes and the integral curves in each phase plane give various steady flows. We have also discussed the appearance of discontinuities in these flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inhomogeneity of the surrounding solvent, provides a description of solvation dynamics consistent with recent experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently developed microscopic theory of solvation dynamics in real dipolar liquids is used to calculate, for the first time, the solvation time correlation function in liquid acetonitrile, water and methanol. The calculated results are in excellent agreement with known experimental and computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe in some detail the process of development of a dynamic model of a three wheeled vehicle using ADAMS-CAR. We first describe the rigid body model, and then the modeling of structural flexibilities. The aim of this report is to document procedural details of such modeling, with a view to presenting more research and development oriented investigations in the future. The contents of this report may also be of interest to practicing engineers engaged in multi-body dynamics modeling of wheeled vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.