8 resultados para Bismuth based powders

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compositionally up and downgraded Bi4-x/3Ti3-xVxO12 (x=0.0, 0.012,0.03, 0.06) thin films were grown on Pt coated silicon substrates by pulsed laser deposition technique. Downgraded fabrication showed improved ferroelectric polarization in comparison to upgraded fabrication. Films deposited at 650 and 700 degrees C showed very large remnant polarization (2P(r)) value of 82 mu C cm(-2), which is comparatively large among all bismuth based thin films reported so far. A mechanism based on vanadium enrich seeded layer formation in the downgraded structure is proposed for the improvement. Moreover, frequency independent behavior (100Hz-5kHz) of the graded films ensures its potential application for various microelectronic devices. (c) 2010 American Institute of Physics. [doi :10.1063/1.3431543].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma-sprayable powders of calcia, magnesia and yttria-stabilized zirconia have been prepared by using polyvinyl alcohol binders. The powders have been characterized for sprayability by spray coating on steer plates previously coated with an NiAl bond coat. The suitability of these coatings for thermal barrier applications have been examined. Thermal barrier and related properties, along with phase stability and mechanical properties, have been found to be good. Failure of the thermal barrier coating has been observed to occur at the interface between the bond coat and the substrate, due to the formation of a pile-up layer consisting of Fe-Zr-Al-O compound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanical milling of a stoichiometric mixture of Bi2O3 and V2O5 yielded nanosized powders of bismuth vanadate, Bi2VO5.5 (BN). Structural evolution of the desired BiV phase, through an intermediate product (BiVO4), was monitored by subjecting the powders, ball milled for various durations to X-ray powder diffraction (XRD), differential thermal analysis (DTA), and transmission electron microscopic (TEM) studies. XRD studies indicate that the relative amount of the BiV phase present in the ball-milled mixture increases with increase in milling time and its formation reaches completion within 54 h of milling. Assynthesized powders were found to stabilize in the high-temperature tetragonal (gamma) phase. DTA analyses of the powders milled for various durations suggest that the BN phase-formation temperature decreases with increase in milling time. The nanometric size (30 nm) of the crystallites in the final product was confirmed by TEM and XRD studies. TEM studies clearly demonstrate the growth of BiV on Bi2O3 crystallites. (C) 1999 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of mechanical activation on the formation of Bi2VO5.5 bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BN phase, via an intermediate BiVO4,phase, was investigated using X-ray powder diffraction; (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h. yielded monophasic gamma-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V4+ ions are stronger and broader in nanocrystalline (n) BN than in the conventionally prepared microcrystalline (m) BN, suggesting theta significant portion of V5+ has been transformed to V4+ during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 tun) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyre and ferroelectric properties. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated a simple, scalable and inexpensive method based on microwave plasma for synthesizing 5 to 10 g/h of nanomaterials. Luminescent nano silicon particles were synthesized by homogenous nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.