11 resultados para Biomeccanica Pattinaggio Salto Lutz
em Indian Institute of Science - Bangalore - Índia
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A finite-element scheme based on a coupled arbitrary Lagrangian-Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier-Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant. (C) 2012 Elsevier Inc. All rights reserved.
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Resumo:
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. 2. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8-50ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. 3. We found that at very small spatial grains (0.04ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25ha, 1ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. 4. Synthesis. This is the first cross-site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale-dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04ha) to slightly larger scales (0.25 and 1ha). This needs to be recognized in forest conservation policy and management.
Resumo:
We give explicit construction of vertex-transitive tight triangulations of d-manifolds for d >= 2. More explicitly, for each d >= 2, we construct two (d(2) + 5d + 5)-vertex neighborly triangulated d-manifolds whose vertex-links are stacked spheres. The only other non-trivial series of such tight triangulated manifolds currently known is the series of non-simply connected triangulated d-manifolds with 2d + 3 vertices constructed by Kuhnel. The manifolds we construct are strongly minimal. For d >= 3, they are also tight neighborly as defined by Lutz, Sulanke and Swartz. Like Kuhnel complexes, our manifolds are orientable in even dimensions and non-orientable in odd dimensions. (c) 2013 Elsevier Inc. All rights reserved.
Resumo:
We introduce k-stellated spheres and consider the class W-k(d) of triangulated d-manifolds, all of whose vertex links are k-stellated, and its subclass W-k*; (d), consisting of the (k + 1)-neighbourly members of W-k(d). We introduce the mu-vector of any simplicial complex and show that, in the case of 2-neighbourly simplicial complexes, the mu-vector dominates the vector of Betti numbers componentwise; the two vectors are equal precisely for tight simplicial complexes. We are able to estimate/compute certain alternating sums of the components of the mu-vector of any 2-neighbourly member of W-k(d) for d >= 2k. As a consequence of this theory, we prove a lower bound theorem for such triangulated manifolds, and we determine the integral homology type of members of W-k*(d) for d >= 2k + 2. As another application, we prove that, when d not equal 2k + 1, all members of W-k*(d) are tight. We also characterize the tight members of W-k*(2k + 1) in terms of their kth Betti numbers. These results more or less answer a recent question of Effenberger, and also provide a uniform and conceptual tightness proof for all except two of the known tight triangulated manifolds. We also prove a lower bound theorem for homology manifolds in which the members of W-1(d) provide the equality case. This generalizes a result (the d = 4 case) due to Walkup and Kuhnel. As a consequence, it is shown that every tight member of W-1 (d) is strongly minimal, thus providing substantial evidence in favour of a conjecture of Kuhnel and Lutz asserting that tight homology manifolds should be strongly minimal. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The heat transfer from a solid phase to an impinging non-isothermal liquid droplet is studied numerically. A new approach based on an arbitrary Lagrangian-Eulerian (ALE) finite element method for solving the incompressible Navier Stokes equations in the liquid and the energy equation within the solid and the liquid is presented. The novelty of the method consists in using the ALE-formulation also in the solid phase to guarantee matching grids along the liquid solid interface. Moreover, a new technique is developed to compute the heat flux without differentiating the numerical solution. The free surface and the liquid solid interface of the droplet are represented by a moving mesh which can handle jumps in the material parameter and a temperature dependent surface tension. Further, the application of the Laplace-Beltrami operator technique for the curvature approximation allows a natural inclusion of the contact angle. Numerical simulation for varying Reynold, Weber, Peclet and Biot numbers are performed to demonstrate the capabilities of the new approach. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Resumo:
In 1987, Kalai proved that stacked spheres of dimension d >= 3 are characterised by the fact that they attain equality in Barnette's celebrated Lower Bound Theorem. This result does not extend to dimension d = 2. In this article, we give a characterisation of stacked 2-spheres using what we call the separation index. Namely, we show that the separation index of a triangulated 2-sphere is maximal if and only if it is stacked. In addition, we prove that, amongst all n-vertex triangulated 2-spheres, the separation index is minimised by some n-vertex flag sphere for n >= 6. Furthermore, we apply this characterisation of stacked 2-spheres to settle the outstanding 3-dimensional case of the Lutz-Sulanke-Swartz conjecture that ``tight-neighbourly triangulated manifolds are tight''. For dimension d >= 4, the conjecture has already been proved by Effenberger following a result of Novik and Swartz. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and orientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let F be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is F-tight. For closed, triangulated 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of the existence of an F-tight, non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an F-tight triangulation of a closed 3-manifold has n vertices and first Betti number beta(1), then (n - 4) (617n - 3861) <= 15444 beta(1). Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra. (C) 2015 Elsevier Ltd. All rights reserved.