161 resultados para Bio(muco)bioadhesion measurements
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents the work on detailed characterization of effervescent spray of Jatropha and Pongamia pure plant oils. The spray characteristics of these biofuels are compared with those of diesel. Both macroscopic and microscopic spray characteristics at different injection pressures and gas-to-liquid ratio (GLR) have been studied. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. Due to their higher viscosity, pure plant oils showed poor atomization compared to diesel and a blend of diesel and pure plant oil at a given GLR. Pure plant oil sprays showed a lower spray cone angle when compared to diesel and blends at lower GLRs. However, the difference is not significant at higher GLRs. Droplet size measurements at 100 mm downstream of the exit orifice showed reduction in Sauter mean diameter (SMD) diameter with increase in GLR. A radial variation in the SMD is observed for the blend and pure plant oils. Pure oils showed a larger variation when compared to the blend. Spray unsteadiness has been characterized based on the image-to-image variation in the mean droplet diameter and fluctuations in the spray cone angle. Results showed that pure plant oil sprays are more unsteady at lower GLRs when compared to diesel and blend. A critical GLR is identified at which the spray becomes steady. The three regimes of spray operation, namely ``steady spray,'' ``pulsating spray,'' and ``spray and unbroken liquid jet'' are identified in the injection pressure-GLR parameter space for these pure plant oils. Two-phase flow imaging inside the exit orifice shows that for the pure plant oils, the flow is highly transient at low GLRs and the bubbly, slug, and annular two-phase flow regimes are all observed. However, at higher GLRs where the spray is steady, only the annular flow regime is observed.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Papers Presented At The National Symposium On Bio-Organic Chemistry, Bangalore, July 1982 - Foreword
Resumo:
The low-frequency (5–100 kHz) dielectric constant ε has been measured in the temperature range 7 × 10−5 < T = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of dε/dt consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
Measurement of alveolar carbon monoxide (CO) presents a facile technique to estimate the lifespan, L, of red blood cells (RBCs) in vivo. Several recent studies employ this technique and calculate L (in days) using the expression, L = 13.8 (Hb)/P-CO(end), where (Hb) is the concentration (in g/dL) of hemoglobin in blood, and P-CO(end) is the endogenous production of CO (in ppm). Implicit in this calculation is the assumption that the fraction, f, of endogenous CO production due to RBC turnover is a constant equal to 0.7, which yields the expected RBC lifespan, L approximate to 120 days, in normal controls. In anemic patients, however, enhanced RBC turnover may increase f substantially above 0.7. The above expression then overestimates L. Here, we deriv an alternative tive expression, L = 3390[Hb]/322P(CO (end)-110, that accounts explicitly for the dependence of f on the rate of RBC turnover and thereby provides more accurate estimates of L without requiring additional measurements. Using the latter expression, we recalculate L from recent measurements on hepatitis C virus infected patients undergoing treatment with ribavirin. We find that our estimates of L in these patients (39 +/- 13 days) are significantly lower than current estimates (46 +/- 14 days), indicating that ribavirin affects RBC survival more severely than expected from current studies. Our expression for L is simple to employ in a clinical setting and would render the broadly applicable technique of alveolar CO measurement for the estimation of RBC lifespan more accurate.
Resumo:
In this paper, we discuss the measurements of spectral surface reflectance (rho(s)(lambda)) in the wavelength range 350-2500 nm measured using a spectroradiometer onboard a low-flying aircraft over Bangalore (12.95 degrees N, 77.65 degrees E), an urban site in southern India. The large discrepancies in the retrieval of aerosol propertiesover land by the Moderate-Resolution Imaging Spectroradiometer (MODIS), which could be attributed to the inaccurate estimation of surface reflectance at many sites in India and elsewhere, provided motivation for this paper. The aim of this paper was to verify the surface reflectance relationships assumed by the MODIS aerosol algorithm for the estimation of surface reflectance in the visible channels (470 and 660 nm) from the surface reflectance at 2100 nm for aerosol retrieval over land. The variety of surfaces observed in this paper includes green and dry vegetations, bare land, and urban surfaces. The measuredreflectance data were first corrected for the radiative effects of atmosphere lying between the ground and aircraft using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The corrected surface reflectance in the MODIS's blue (rho(s)(470)), red (rho(s)(660)), and shortwave-infrared (SWIR) channel (rho(s)(2100)) was linearly correlated. We found that the slope of reflectance relationship between 660 and 2100 nm derived from the forward scattering data was 0.53 with an intercept of 0.07, whereas the slope for the relationship between the reflectance at 470 and 660 nm was 0.85. These values are much higher than the slope (similar to 0.49) for either wavelengths assumed by the MODIS aerosol algorithm over this region. The reflectance relationship for the backward scattering data has a slope of 0.39, with an intercept of 0.08 for 660 nm, and 0.65, with an intercept of 0.08 for 470 nm. The large values of the intercept (which is very small in the MODIS reflectance relationships) result in larger values of absolute surface reflectance in the visible channels. The discrepancy between the measured and assumed surface reflectances could lead to error in the aerosol retrieval. The reflectance ratio (rho(s)(660)/rho(s)(2100)) showed a clear dependence on the N D V I-SWIR where the ratio increased from 0.5 to 1 with an increase in N V I-SWIR from 0 to 0.5. The high correlation between the reflectance at SWIR wavelengths (2100, 1640, and 1240 nm) indicated an opportunity to derive the surface reflectance and, possibly, aerosol properties at these wavelengths. We need more experiments to characterize the surface reflectance and associated inhomogeneity of land surfaces, which play a critical role in the remote sensing of aerosols over land.
Resumo:
AREFLEX spanwise cambered delta wing with a conical camber designed for M= 1.4, using the method of Ref. 1, was tested at the design Mach number as well as off-design Mach number M=0.15 and 2.3, respectively. The test results are compared with those of a plane wing and also with the available theoretical results at the design condition. At subsonic speed, the cambered wing has less lift at a given incidence and higher lift-to-drag ratio at a given lift than the plane wing, while at supersonic speeds, both of these quantities were less on the cambered wing. At supersonic speed, at the design incidence and Mach number, there is good agreement between results from theory and experiment. The center of pressure on the cambered wing is ahead of that on the plane wing at subsonic speed, while the reverse is true at supersonic speeds. Finally, it is found that over a useful range of lift the cambered wing is aerodynamically more efficient at subsonic speeds, and less so at supersonic speeds, than the plane wing.
Resumo:
A new four-hole cylindrical cantilever probe is described which could be used for three-dimensional flow surveys. The probe is more compact than the usual cylindrical type allowing for closer approach to a boundary. The probe is robust and gives good reproducibility. It can be used for a wide range of pitch angle. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.
Resumo:
The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
A minimax filter is derived to estimate the state of a system, using observations corrupted by colored noise, when large uncertainties in the plant dynamics and process noise are presen.