140 resultados para Bidentate ligand
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new heterocycle, namely 2-(furyl)-3-(furfuralimino)-1,2-dihydroquinazolin-4(3H)-one (ffdq) was formed by the ondensation of 2-aminobenzoylhydrazide with furfural and characterized by physico-chemical, spectroscopic, and single crystal X-ray diffraction studies. A series of complexes of ffdq have been synthesized and characterized by physico-chemical, spectroscopic, and thermal studies. According to the i.r. and 1H-n.m.r. spectra ffdq behaves as a bidentate ligand coordinating through quinazoline oxygen and azomethine nitrogen. The FAB-mass spectrum of the Cd(II) complex indicates the monomeric nature of this complex. The X-band e.p.r. spectrum of the Cu(II) complex and thermal stabilities of the Co(II) and Ni(II) complexes are discussed.
Resumo:
The self-assembly of bidentate ligand, 1,10-phenanthroline with C-methyl calix[4]resorcinarene (CMCR) in presence of coumarin results in a unique trimer stacking arrangement of phenanthroline molecules in a nanotubular motif generated by the supramolecular assembly of the host.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.
Resumo:
The Cu(II). Zn(II) and Cd(II) chloride and bromide complexes of N-2(2-pyridyl)thioacetamide and N-(2-pyridyl)thiobenzamide have been prepared. The infrared and 1H and 13C NMR spectra of the complexes and the free ligands have been analysed to determine the coordination sites. It was concluded that N-(2-pyridyl)thioacetamide behaves as a bidentate ligand, chelating to the metal via pyridine nitrogen and thionamide sulfur atoms while the other ligand, N-(2-pyridyl)thiobenzamide coordinates to the metal atom as a unidentate through the pyridine nitrogen atom. Conformations of the free ligands are discussed.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
In the title complex, [Al(C8H13O3)(3)], a potential metal-organic chemical vapour deposition (MOCVD) precursor, three bidentate ligand molecules are bound to the metal atom, forming an octahedral geometry. Two non-planar six-membered chelate rings adopt screw-boat conformations, while the third ring has a conformation that lies about halfway between an envelope and a screw-boat.
Resumo:
Staphylococcus aureus is an opportunistic pathogen that rapidly acquires resistance to frontline antibiotics. The characterization of novel protein targets from this bacterium is thus an important step towards future therapeutic strategies. Here, the crystal structure of an amidohydrolase, SACOL0085, from S. aureus COL is described. SACOL0085 is a member of the M20D family of peptidases. Unlike other M20D peptidases, which are either monomers or dimers, SACOL0085 adopts a butterfly-shaped homotetrameric arrangement with extensive intersubunit interactions. Each subunit of SACOL0085 contains two Mn2+ ions at the active site. A conserved cysteine residue at the active site distinguishes M20D peptidases from other M20 family members. This cysteine, Cys103, serves as bidentate ligand coordinating both Mn2+ ions in SACOL0085.
Resumo:
Staphylococcus aureus is an opportunistic pathogen that rapidly acquires resistance to frontline antibiotics. The characterization of novel protein targets from this bacterium is thus an important step towards future therapeutic strategies. Here, the crystal structure of an amidohydrolase, SACOL0085, from S. aureus COL is described. SACOL0085 is a member of the M20D family of peptidases. Unlike other M20D peptidases, which are either monomers or dimers, SACOL0085 adopts a butterfly-shaped homotetrameric arrangement with extensive intersubunit interactions. Each subunit of SACOL0085 contains two Mn2+ ions at the active site. A conserved cysteine residue at the active site distinguishes M20D peptidases from other M20 family members. This cysteine, Cys103, serves as bidentate ligand coordinating both Mn2+ ions in SACOL0085.
Resumo:
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)(2)]ClO4 (1)and [CuL(PPh3)(2)]ClO4 (2)have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible Cu-II/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I)complexes 1 and 2 the emission in quenched. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Complexes of cobalt(II), nickel(II) and copper(II) with novel bidentate bibenzimidazoles, [M(L-L)Cl2], where L-L are methylenebis(1, 1prime-benzimidazole), methylenebis(2, 2prime-benzimidazole) and dimethylenebis(2, 2prime-benzimidazole) are described and characterized by different physical measurements. The four coordinate complexes have distorted tetrahedral or square coplanar structures. The bridging entity between the two donor groups apparently influences the ligand field strength and the ligands occupy a higher position than that of benzimidazole in the spectrochemical series.
Resumo:
The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.
Resumo:
The reaction of W(CO)(6) with 1-alkyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiR) has synthesized [W(CO)(5)(alpha-NaiR-N)] (alpha-NaiR-N refers to the monodentate imidazole-N donor ligand) at room temperature. The structure of[W(CO)(5)(alpha-NaiMe-N)] shows a monodentate imidazole-N coordination of 1-methyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiMe). The complexes are characterized by elemental, mass and other spectroscopic data (IR, UV-Vis, NMR). On refluxing in THF at 323 K, [W(CO)(5)(alpha-NaiR-N)] undergoes decarbonylation to give [W(CO)(4)(alpha-NaiR-N,N')] (alpha-NaiR-N,N' refers to the imidazole-N(N), azo-N(N') bidentate chelator). Cyclic voltammetry shows metal oxidation (W-0/W-1) and ligand reductions (azo/azo(-), azo(-)/azo(=)). The redox and electronic properties are explained by theoretical calculations using an optimized geometry. DFT computation of [W(CO)(5)(alpha-NaiMe-N)] suggests that the major contribution to the HOMO/HOMO - 1 come from W cl-orbitals and the orbitals of CO. The LUMOs are occupied by alpha-NaiMe functions. The back bonding interaction thus originates from the W(CO)(n) moiety to the LUMO of alpha-NaiR. A TD-DFT calculation has ascribed that HOMO/HOMO - 1 -> LUMO is a mixture of metal-to-ligand and ligand-to-ligand charge transfer underlying the CO -> azoimine contribution. The complexes show emission spectra at room temperature. [W(CO)(4)(alpha-NaiR-N,N')] shows a higher fluorescence quantum yield (phi = 0.05-0.07) than [W(CO)(5)(alpha-NaiR-N)] (phi = 0.01-0.02). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lanthanide coordination complexes with unidentate and bidentate amide ligands have been widely reported in the literature[l].In contrast, however, coordination compounds with tridentate ligands and with ligands containing ether oxygen as donor atoms to lanthanides have received little attention. In this paper we report the preparation and characterization of complexes formed by the interaction of the lanthanide perchlorates with N, N, N', N'- tetramethyloxydiacetamide (TMODA). The new complexes have been characterized by analysis, conductance, IR and electronic spectra. In addition, ~H and '3C NMR spectra of the ligand and its diamagnetic La ~+ and y3+ complexes are also discussed.