6 resultados para Bible and geology.
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we propose the first approximation for thickness of Quaternary sediment and late Quaternary early Tertiary topography for the part of lower reaches of Narmada valley in a systematic way using the shallow seismic method, that records both horizontal and vertical components of the microtremor (ambient noise) caused by natural processes. The measurements of microtremors were carried out at 31 sites spaced at a grid interval of 5 km s using Lennartz seismometer (5 s period) and City shark-II data acquisition system. The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. For the present study, we concentrate on frequency range between 0.2 Hz and 10 Hz. The thickness of unconsolidated sediments at various sites is calculated based on non-linear regression equations proposed by Ibs-von Seht and Wohlenberg (1999) and Parolai et al. (2002). The estimated thickness is used to plot digital elevation model and cross profiles correlating with geomorphology and geology of the study area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Given the lack of proper constraints in understanding earthquake mechanisms in the cratonic interiors and the general absence of good quality database, here we reassess the seismic hazard in the province of Kerala, a part of the aEuro cent stable continental interioraEuro cent, based on an improved historical and instrumental database. The temporal pattern of the current seismicity suggests that > 60% of the microtremors in Kerala occurs with a time lag after the peak rainfall, indicating that hydroseismicity may be a plausible model to explain the low-level seismicity in this region. Further, an increment in overall seismicity rate in the region in the recent years is explained as due to increased anthropogenic activities, which includes changes in hydrological pathways as a consequence of rapid landscape changes. Our analyses of the historical database eliminate a few events that are ascribed to this region; this exercise has also led to identification of a few events, not previously noted. The improved historical database essentially suggests that the central midland region is more prone to seismic activity compared to other parts of Kerala. This region appears to have generated larger number of significant earthquakes; the most prominent being the multiple events (doublets) of 1856 and 1953, whose magnitudes are comparable to that of the 2000/2001 (central Kerala) events. Occurrences of these historical events and the recent earthquakes, and the local geology indicative of pervasive faulting as shown by widely distributed pseudotachylite veins suggest that the NNW-SSE trending faults in central midland Kerala may host discrete potentially active sources that may be capable of generating light to moderate size earthquakes. The frequency of earthquakes in central Kerala evident from the historical database requires that the seismic codes stipulated for this region are made mandatory.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.
Resumo:
The first finding of low-temperature eclogites from the Indochina region is reported. The eclogites occur along the Song Ma Suture zone in northern Vietnam, which is widely regarded as the boundary between the South China and Indochina cratons. The major lithology of the area is pelitic schist that contains garnet and phengite with or without biotite, chloritoid, staurolite and kyanite, and which encloses blocks and lenses of eclogite and amphibolite. The eclogites commonly consist of garnet, omphacite, phengite, rutile, quartz and/or epidote with secondary barroisite. Omphacite is commonly surrounded by a symplectite of Na-poor omphacite and Na-rich plagioclase. In highly retrograded domains, diopside + tremolite + plagioclase symplectites replace the primary phases. Estimated peak-pressure metamorphic conditions based on isochemical phase diagrams for the eclogites are 2.1-2.2 GPa and 600-620 degrees C, even though thermobarometric results yield higher pressure and temperature conditions (2.6-2.8 GPa and 620-680 degrees C). The eclogites underwent a clockwise P-T trajectory with a post-peak-pressure increase of temperature to a maximum of > 750 degrees C at 1.7 GPa and a subsequent cooling during decompression to 650 degrees C and 1.3 GPa, which was followed by additional cooling before close-to-isothermal decompression to similar to 530 degrees C at 0.5 GPa. The surrounding pelitic schist (garnet-chloritoid-phengite) records similar metamorphic conditions (580-600 degrees C at 1.9-2.3 GPa) and a monazite chemical age of 243 +/- 4 Ma. A few monazite inclusions within garnet and the cores of some zoned monazite in garnet-phengite schist record an older thermal event (424 +/- 15 Ma). The present results indicate that the Indochina craton was deeply (> 70 km) subducted beneath the South China craton in the Triassic. The Silurian cores of monazite grains may relate to an older non-collisional event in the Indochina craton.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.