9 resultados para Bergman
em Indian Institute of Science - Bangalore - Índia
Resumo:
Through-bond interactions in 1,4-dehydrobenzene preferentially stabilize the out-of-phase combination of the radical hydrids, The resultant splitting between the frontier orbitals is crucial in making Bergman cyclization a symmetry-allowed process. Orbital symmetry also inhibits the radical centers from forming a C-C bond, enabling the biradical to survive as a local minimum capable of intermolecular hydrogen abstraction, Both these factors, which are important in the design of DNA cleaving molecules, are confirmed through calculations on biradicals formed from diynes in which through-bond interactions stabilize the in-phase combination of hybrids at the radical centers.
Resumo:
We study diagonal estimates for the Bergman kernels of certain model domains in C-2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. Thisn condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range-roughly speaking-from being mildly infinite-type'' to very flat at the infinite-type points.
Resumo:
In this note, we point out that a large family of n x n matrix valued kernel functions defined on the unit disc D subset of C, which were constructed recently in [9], behave like the familiar Bergman kernel function on ID in several different ways. We show that a number of questions involving the multiplication operator on the corresponding Hilbert space of holomorphic functions on D can be answered using this likeness.
Resumo:
A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.
Resumo:
In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Gammakslash}H-n. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L-2 (Gammakslash}H-n) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and characterise the image of L-2 (GammakslashH-n) in terms of twisted Bergman and Hermite Bergman spaces.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.
Resumo:
We study the Segal-Bargmann transform on M(2). The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer's type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of M(2). We also prove a Paley-Wiener theorem for the inverse Fourier transform.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim