135 resultados para Belief change
em Indian Institute of Science - Bangalore - Índia
Resumo:
Regional impacts of climate change remain subject to large uncertainties accumulating from various sources, including those due to choice of general circulation models (GCMs), scenarios, and downscaling methods. Objective constraints to reduce the uncertainty in regional predictions have proven elusive. In most studies to date the nature of the downscaling relationship (DSR) used for such regional predictions has been assumed to remain unchanged in a future climate. However,studies have shown that climate change may manifest in terms of changes in frequencies of occurrence of the leading modes of variability, and hence, stationarity of DSRs is not really a valid assumption in regional climate impact assessment. This work presents an uncertainty modeling framework where, in addition to GCM and scenario uncertainty, uncertainty in the nature of the DSR is explored by linking downscaling with changes in frequencies of such modes of natural variability. Future projections of the regional hydrologic variable obtained by training a conditional random field (CRF) model on each natural cluster are combined using the weighted Dempster-Shafer (D-S) theory of evidence combination. Each projection is weighted with the future projected frequency of occurrence of that cluster (''cluster linking'') and scaled by the GCM performance with respect to the associated cluster for the present period (''frequency scaling''). The D-S theory was chosen for its ability to express beliefs in some hypotheses, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The methodology is tested for predicting monsoon streamflow of the Mahanadi River at Hirakud Reservoir in Orissa, India. The results show an increasing probability of extreme, severe, and moderate droughts due to limate change. Significantly improved agreement between GCM predictions owing to cluster linking and frequency scaling is seen, suggesting that by linking regional impacts to natural regime frequencies, uncertainty in regional predictions can be realistically quantified. Additionally, by using a measure of GCM performance in simulating natural regimes, this uncertainty can be effectively constrained.
Resumo:
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Forests play a critical role in addressing climate change concerns in the broader context of global change and sustainable development. Forests are linked to climate change in three ways. i) Forests are a source of greenhouse gas (GHG) emissions: ii) Forests offer mitigation opportunities to stabilise GHG concentrations: iii) Forests are impacted by climate change. This paper reviews studies related to climate change and forests in India: first, the studies estimating carbon inventory for the Indian land use change and forestry sector (LUCF), then the different models and mitigation potential estimates for the LUCF sector in India. Finally it reviews the studies on the impact of climate change on forest ecosystems in India, identifying the implications for net primary productivity and bio-diversity. The paper highlights data, modelling and research gaps relevant to the GHG inventory, mitigation potential and vulnerability and impact assessments for the forest sector in India.
Resumo:
The accelerated rate of increase in atmospheric CO2 concentration in recent years has revived the idea of stabilizing the global climate through geoengineering schemes. Majority of the proposed geoengineering schemes will attempt to reduce the amount of solar radiation absorbed by our planet. Climate modelling studies of these so called 'sunshade geoengineering schemes' show that global warming from increasing concentrations of CO2 can be mitigated by intentionally manipulating the amount of sunlight absorbed by the climate system. These studies also suggest that the residual changes could be large on regional scales, so that climate change may not be mitigated on a local basis. More recent modelling studies have shown that these schemes could lead to a slow-down in the global hydrological cycle. Other problems such as changes in the terrestrial carbon cycle and ocean acidification remain unsolved by sunshade geoengineering schemes. In this article, I review the proposed geoengineering schemes, results from climate models and discuss why geoengineering is not the best option to deal with climate change.
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
Unsteady natural convection flow in a two- dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left- hand vertical wall has temperature T-h and the right- hand vertical wall is maintained at temperature T-c ( T-h > T-c) and the horizontal walls are insulated. At time t > 0, the left- hand vertical wall temperature is suddenly raised to (T-h) over bar ((T-h) over bar > T-h) which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.
Resumo:
The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.
Resumo:
Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
Alamethicin, its derivatives and some synthetic fragments have been shown to be uncouplers of oxidative phosphorylation in rat liver mitochondria. A minimum peptide chain length of 13 residues is necessary for this activity. Peptide esters are more efficient uncouplers than the corresponding peptide acids. Esterification of the Glu(18) γ-COOH group in alamethicin does not diminish uncoupling activity. The structural requirements for uncoupling activity parallel those determined for ionophoretic action in small, unilamellar liposomes. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; Ac, acetyl; CTC, chlortetracycline.
Resumo:
Analytical solutions are presented for the effectiveness factor of a zeroth-order reaction with volume change and nonuniform catalyst activity profile in slab, cylinder and spherical pellets. The possibility of shape normalization is considered for a variety of activity profiles and pellet shapes. When the catalyst activity at the external surface of the pellet is non-zero, shape normalization is obtained, which makes the asymptotic behavior of the effectiveness factor identical for small and large values of Thiele modulus, however, the normalization can lead to significant errors, particularly for the case of activity profiles decreasing towards the outer surface of the catalyst.
Resumo:
Analytical solution of a 2-dimensional problem of solidification of a superheated liquid in a semi-infinite mould has been studied in this paper. On the boundary, the prescribed temperature is such that the solidification starts simultaneously at all points of the boundary. Results are also given for the 2-dimensional ablation problem. The solution of the heat conduction equation has been obtained in terms of multiple Laplace integrals involving suitable unknown fictitious initial temperatures. These fictitious initial temperatures have interesting physical interpretations. By choosing suitable series expansions for fictitious initial temperatures and moving interface boundary, the unknown quantities can be determined. Solidification thickness has been calculated for short time and effect of parameters on the solidification thickness has been shown with the help of graphs.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.