276 resultados para Bayesian Modeling Averaging
em Indian Institute of Science - Bangalore - Índia
Resumo:
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
A coupled methodology for simulating the simultaneous growth and motion of equiaxed dendrites in solidifying melts is presented. The model uses the volume-averaging principles and combines the features of the enthalpy method for modeling growth, immersed boundary method for handling the rigid solid-liquid interfaces, and the volume of fluid method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. A two-dimensional framework with incompressible and Newtonian fluid is considered. Validation with available literature is performed and dendrite growth in the presence of rotational and buoyancy driven flow fields is studied. It is seen that the flow fields significantly alter the position and morphology of the dendrites. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The impulse response of wireless channels between the N-t transmit and N-r receive antennas of a MIMO-OFDM system are group approximately sparse (ga-sparse), i.e., NtNt the channels have a small number of significant paths relative to the channel delay spread and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wireless channels are also group approximately cluster-sparse (gac-sparse), i.e., every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this paper, we cast the problem of estimating the ga-sparse and gac-sparse block-fading and time-varying channels in the sparse Bayesian learning (SBL) framework and propose a bouquet of novel algorithms for pilot-based channel estimation, and joint channel estimation and data detection, in MIMO-OFDM systems. The proposed algorithms are capable of estimating the sparse wireless channels even when the measurement matrix is only partially known. Further, we employ a first-order autoregressive modeling of the temporal variation of the ga-sparse and gac-sparse channels and propose a recursive Kalman filtering and smoothing (KFS) technique for joint channel estimation, tracking, and data detection. We also propose novel, parallel-implementation based, low-complexity techniques for estimating gac-sparse channels. Monte Carlo simulations illustrate the benefit of exploiting the gac-sparse structure in the wireless channel in terms of the mean square error (MSE) and coded bit error rate (BER) performance.
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.
Resumo:
The minimum cost classifier when general cost functionsare associated with the tasks of feature measurement and classification is formulated as a decision graph which does not reject class labels at intermediate stages. Noting its complexities, a heuristic procedure to simplify this scheme to a binary decision tree is presented. The optimizationof the binary tree in this context is carried out using ynamicprogramming. This technique is applied to the voiced-unvoiced-silence classification in speech processing.
Resumo:
The precise timing of individual signals in response to those of signaling neighbors is seen in many animal species. Synchrony is the most striking of the resultant timing patterns. One of the best examples of acoustic synchrony is in katydid choruses where males produce chirps with a high degree of temporal overlap. Cooperative hypotheses that speculate on the evolutionary origins of acousti synchrony include the preservation of the species-specific call pattern, reduced predation risks, and increased call intensity. An alternative suggestion is that synchrony evolved as an epiphenomenon of competition between males in response to a female preference for chirps that lead other chirps. Previous models investigating the evolutionary origins of synchrony focused only on intrasexual competitive interactions. We investigated both competitive and cooperative hypotheses for the evolution of synchrony in the katydid Mecopoda ``Chirper'' using physiologically and ecologically realistic simulation models incorporating the natural variation in call features, ecology, female preferences, and spacing patterns, specifically aggregation. We found that although a female preference for leading chirps enables synchronous males to have some selective advantage, it is the female preference for the increased intensity of aggregations of synchronous males that enables synchrony to evolve as an evolutionarily stable strategy.