5 resultados para Bats.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka. A total of 106 bats were caught over 108 sampling nights, representing 17 species, 3 belonging to Megachiroptera and 14 to Microchiroptera. Acoustical and roost surveys added three more species, two from Microchiroptera and one from Megachiroptera. Of these 20 species, 4 belonged to the family Pteropodidae, 10 to Vespertilionidae, 3 to Rhinolophidae, 2 to Megadermatidae and 1 to Hipposideridae. We recorded the echolocation calls of 13 of the 16 microchiropteran species, of which the calls of 4 species (Pipistrellus coromandra, Pipistrellus affinis, Pipistrellus ceylonicus and Harpiocephalus harpia) have been recorded for the first time. Discriminant function analyses of the calls of 11 species provided 91.7% correct classification of individuals to their respective species, indicating that the echolocation calls could be used successfully for non-invasive acoustic surveys and monitoring of bat species in the future.
Resumo:
Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.
Resumo:
The sympatrically occurring Indian short-nosed fruit bat Cynopterus sphinx and Indian flying fox Pteropus giganteus visit Madhuca latifolia (Sapotaceae), which offers fleshy corollas (approximate to 300 mg) to pollinating bats. The flowers are white, tiny and in dense fascicles The foraging activities of the two bat species were segregated in space and time. Cynopterus sphinx fed on resources at lower heights in the trees than P giganteus and its peak foraging activity occurred at 19 30 h, before that of P giganteus Foraging activities involved short searching flights followed by landing and removal of the corolla by mouth Cynopterus sphinx detached single corollas from fascicles and carried them to nearby feeding roosts, where it sucked the juice and spat out the Fibrous remains Pteropus giganteus landed on top of the trees and fed on the corollas in situ, its peak activity occurred at 20 30 11 This species glided and crawled between the branches and held the branches with claws and forearms when removing fleshy corollas with Its Mouth Both C sphinx and P giganteus consumed fleshy corollas with attached stamens and left the gynoecium intact Bagging experiments showed that fruit-set in bat-visited flowers was significantly higher (P < 0.001) than in self-pollinated flowers.
Resumo:
Ripe fruit need to signal their presence to attract dispersal agents. Plants may employ visual and/or olfactory sensory channels to signal the presence of ripe fruit. Visual signals of ripe fruit have been extensively investigated. However, the volatile signatures of ripe fruit that use olfactorily-oriented dispersers have been scarcely investigated. Moreover, as in flowers, where floral scents are produced at times when pollinators are active (diurnal versus nocturnal), whether plants can modulate the olfactory signal to produce fruit odours when dispersers are active in the diel cycle is completely unknown. We investigated day night differences in fruit odours in two species of figs, Ficus racemosa and Ficus benghalensis. The volatile bouquet of fruit of F.racemosa that are largely dispersed by bats and other mammals was dominated by fatty acid derivatives such as esters. In this species in which the ripe fig phase is very short, and where the figs drop off soon after ripening, there were no differences between day and night in fruit volatile signature. The volatile bouquet of fruit of F. benghalensis that has a long ripening period, however, and that remain attached to the tree for extended periods when ripe, showed an increase in fatty acid derivatives such as esters and of benzenoids such as benzaldehyde at night when they are dispersed by bats, and an elevation of sesquiterpenes during the day when they are dispersed by birds. For the first time we provide data that suggest that the volatile signal produced by fruit can show did l differences based on the activity period of the dispersal agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.