68 resultados para Batch reactor

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluidized bed reactor technology was investigated as a means of developing a new simple and low cost process for coal desulfurization. Preliminary experimental results obtained in a 2.54 cm batch fluidized bed reactor have shown that over 80% total sulfur reductions can be achieved by sequential chlorination and dechlorination/ hydrodesulfurization of high sulfur pulverized coals. Proximate and ultimate analyses of desulfurized coals have revealed enhanced carbon and fixed carbon levels and substantially reduced volatile, oxygen and hydrogen contents. While there was a minor increase in the ash content and heating value, nitrogen and chlorine contents were essentially unchanged. Compared to an earlier slurry phase process, the fluidized bed reactors process has specific advantages such as shorter reaction times, fewer processing steps and reduced reactant requirements. A fluidized bed reactor process may thus have a potential of being developed into a simple and economic means of converting high sulfur coals to environmentally acceptable fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported herein is part of an on-going programme to develop a computer code which, given the geometrical, process and material parameters of the forging operation, is able to predict the die and the billet cooling/heating characteristics in forging production. The code has been experimentally validated earlier for a single forging cycle and is now validated for a small batch production. To facilitate a step-by-step development of the code, the billet deformation has so far been limited to its surface layers, a situation akin to coining. The code has been used here to study the effects of die preheat-temperature, machine speed and rate of deformation the cooling/heating of the billet and the dies over a small batch of 150 forgings. The study shows: that there is a pre-heat temperature at which the billet temperature changes little from one forging to the next; that beyond a particular number of forgings, the machine speed ceases to have any pronounced influence on the temperature characteristics of the billet; and that increasing the rate of deformation reduces the heat loss from the billet and gives the billet a stable temperature profile with respect to the number of forgings. The code, which is simple to use, is being extended to bulk-deformation problems. Given a practical range of possible machine, billet and process specifics, the code should be able to arrive at a combination of these parameters which will give the best thermal characteristics of the die-billet system. The code is also envisaged as being useful in the design of isothermal dies and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach is presented for hierarchical control of an ammonia reactor, which is a key unit process in a nitrogen fertilizer complex. The aim of the control system is to ensure safe operation of the reactor around the optimal operating point in the face of process variable disturbances and parameter variations. The four different layers perform the functions of regulation, optimization, adaptation, and self-organization. The simulation for this proposed application is conducted on an AD511 hybrid computer in which the AD5 analog processor is used to represent the process and the PDP-11/ 35 digital computer is used for the implementation of control laws. Simulation results relating to the different layers have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of iron(II1) extraction by bis(Zethylhexy1) phosphate (HDEHP, HA) in kerosene from sulfuric acid solutions has been studied in a liquid-liquid laminar jet reactor. The contact time of the interface in this reacting device is of the same order of magnitude as the surface renewal time in dispersion mixing and much less than that obtained in the relatively quiescent condition of the Lewis cell. Yet the analysis of the data in this study suggested a rate-controlling step involving surface saturation quite in conformity with that obtained in the Lewis cell and not with that in dispersion mixing as reported in the literature. Further, the mechanism suggested a weaker dependence of the rate on hydrogen ion concentration which was reported by other workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conveying zone and the filter bag zone of a Filter Bag Reactor have been analysed as individual reactors. The gas and solid particles flow almost in plug flow through the pneumatic conveying section. In the filter bag the height of the packed column varies with time, a cell model has been used to calculate the concentration of outgoing stream. The total conversion obtained is the sum of conversions in each section of the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific objective of this paper is to develop multiloop controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. The dynamic model considered here has nine state variables, two control inputs, and two outputs. A systematic procedure for pairing the two inputs with the corresponding two outputs is presented. The two multiloop proportional controllers so configured are designed via the parameter plane method. This economic configuration of controllers maintains the temperature profile almost at the optimal value whereas the point controllers fail to do so.