4 resultados para Barrier Design.

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS(2-)channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene- metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes. (c) 2016 AIP Publishing LLC.