18 resultados para Baro and volume receptors

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative induction of FSH and LH receptors in the granulosa cells of immature rat ovary by pregnant mare serum gonadotropin (PMSG) has been studied. A single injection of PMSG (15 IU) brought about a 3- and 12-fold increase in FSH and LH receptor concentration,respectively, in the granulosa cells. Maximal concentration was reached by 72 h but the receptor levels showed a sharp decline during the next 24–48 h. The kinetic properties of the newly formed FSH receptors were indistinguishable from the pre-existing ones. The induced FSH receptors were functional as demonstrated by an increase in the in vitro responsiveness of the cells to exogenous FSH in terms of progesterone production. Treatment of immature rats with cyanoketone, an inhibitor of Δ5,3β-hydroxysteroid dehydrogenase, prior to PMSG injection effectively reduced the PMSG-stimulated increase in the serum estradiol, uterine weight and LH receptors but had no effect on the FSH receptor induction. The ability of PMSG to induce gonadotropin receptors can be arrested at any given time by injecting its antibody, thereby suggesting a continuous need for the hormonal inducer. Estrogen in the absence of the primary inducer was unable to maintain the induced LH and FSH receptor concentration. Inhibition of prostaglandin synthesis using indomethacin also had no effect on either the induction or degradation of gonadotropin receptors. Administration of PMSG antiserum, 48 h after PMSG injection, brought about a rapid decline in the induced receptors over the next 24 h, with a rate constant and \iota 1/2 of 0.078 h−1 and 8.9 h for FSH receptors and 0.086 h−1 and 8.0 h for the LH receptors, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bulk of power transmission from the generating stations to the load centres is carried through overhead lines. The distances involved could span several hundreds of kilometres. To minimize line losses, power transmission over such long distances is carried out at high voltages (several hundreds of kV). A network of outdoor lines operating at different voltages has been found to be the most economical method of power delivery. The disc insulators perform dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower. These insulators have to perform under various environmental conditions; hence the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. In view of this the present investigation aims to simulate the surface electric field stress on different types of porcelain/ceramic insulators; both normal and anti-fog type discs which are used for high voltage transmission/distribution systems are considered. The surface charge simulation method is employed for the field computation to simulate potential, electric field, surface and bulk/volume stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regular associated solution model for binary systems has been modified by incorporating the size of the complex as an explicit variable. The thermodynamic properties of the liquid alloy and the interactions between theA ?B type of complex and the unassociated atoms in anA-B binary have been evaluated as a function of relative size of the complex using the activity coefficients at infinite dilution and activity data at one other composition in the binary. The computational procedure adopted for determining the concentration of clusters and interaction energies in the associated liquid is similar to that proposed by Lele and Rao. The analysis has been applied to the thermodynamic mixing functions of liquid Al-Ca alloys believed to contain Al2Ca associates. It is found that the size of the cluster significantly affects the interaction energies between the complex and the unassociated atoms, while the equilibrium constant and enthalpy change for the association reaction exhibit only minor variation, when the equations are fitted to experimental data. The interaction energy between unassociated free atoms remains virtually unaltered as the size of the complex is varied between extreme values. Accurate data on free energy, enthalpy, and volume of mixing at the same temperature on alloy systems with compound forming tendency would permit a rigorous test of the proposed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A membrane with interpenetrating networks between poly(vinyl alcohol) (PVA) and poly(styrene sulfonic acid) (PSSA) coupled with a high proton conductivity is realized and evaluated as a proton exchange membrane electrolyte for a direct methanol fuel cell (DMFC). Its reduced methanol permeability and improved performance in DMFCs suggest the new blend as an alternative membrane to Nafion membranes. The membrane has been characterized by powder X-ray diffraction, scanning electron microscopy, time-modulated differential scanning calorimetry, and thermogravimetric analysis in conjunction with its mechanical strength. The maximum proton conductivity of 3.3×10−2 S/cm for the PVA–PSSA blend membrane is observed at 373 K. From nuclear magnetic resonance imaging and volume localized spectroscopy experiments, the PVA–PSSA membrane has been found to exhibit a promising methanol impermeability, in DMFCs. On evaluating its utility in a DMFC, it has been found that a peak power density of 90 mW/cm2 at a load current density of 320 mA/cm2 is achieved with the PVA–PSSA membrane compared to a peak power density of 75 mW/cm2 at a load current density of 250 mA/cm2 achievable for a DMFC employing Nafion membrane electrolyte while operating under identical conditions; this is attributed primarily to the methanol crossover mitigating property of the PVA–PSSA membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbohydrate residues of glycosphingolipids were implicated in many biologic processes such as cell-to-cell interactions; and as receptors for some viruses, bacterial and plant toxins, hormones, and so forth, and invariably for all the lectins (1). However, their receptor functions remained poorly defined for a long time as they form micelles even at very low concentrations in aqueous medium. In micelles, the oligosaccharide chains are not expected to have a well defined orientation suitable for recognition by macromolecular ligands. This problem was overcome by incorporating them in model membranes, namely, the liposomes. The demonstration of lectin-glycolipid interaction using liposomal model membranes was a crucial development that established glycolipids as biological receptors. Moreover, glycolipid-bearing liposomes provide a convenient system for investigating the role of glycolipid density, orientation, and exposure of their oligosaccharide chains at the membrane interface relevant to their receptor function (2–4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of similar to 40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 angstrom, c=5.27563 angstrom and V=47.684 (angstrom)(3)) are found to be greater than that of undoped ZnO (a=3.19993 angstrom, c=5.22546 angstrom and V=46.336 (angstrom)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at similar to 3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to T-4(1) -> (6)A(1) transition of Mn2+ ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to Mn-55 hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn2+ ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (chi) have been evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents development of a computational fluid dynamic (CFD) model to predict unsteady, two-dimensional temperature, moisture and velocity distributions inside a novel, biomass-fired, natural convection-type agricultural dryer. Results show that in initial stages of drying, when material surface is wet and moisture is easily available, moisture removal rate from surface depends upon the condition of drying air. Subsequently, material surface becomes dry and moisture removal rate is driven by diffusion of moisture from inside to the material surface. An optimum 9-tray configuration is found to be more efficient than for the same mass of material and volume of dryer. A new configuration of dryer, mainly to explore its potential to increasing uniformity in drying across all trays, is also analyzed. This configuration involves diverting a portion of hot air before it enters over the first tray and is supplied directly at an intermediate location in the dryer. Uniformity in drying across trays has increased for the kind of material simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new hydroxynaphthyl-hydrazone based fluorogenic chemosensors R-1 and R-2 have been synthesized by Schiff base condensation of Tris(4-formylphenyl)amine with 1-hydroxynaphthalene-2-hydrazide and 1-hydroxynaphthalene-2-carbohydrazone, respectively. They are examined as highly selective and sensitive receptors for Cu2+ ions in aqueous medium. Electronic absorption as well as fluorescence titration studies of receptors R-1 and R-2 with different metal cations in H2O/CH3CN medium showed highly selective and very rapid (< 2 min) binding affinity towards Cu2+ ions even in the presence of other commonly coexisting metal ions such as Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+ and Hg2+. Quantification of the fluorescence titration analysis indicated that these newly synthesized receptors (R-1 and R-2) can indicate the presence of Cu2+ ions even at very low concentrations of 598 and 676 ppt, respectively. In addition, the propensity of these receptors as bio-imaging fluorescent probes to detect Cu2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against HeLa cells have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ampcalculator (AMPC) is a Mathematica (c) based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p(4))) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G(27). Another illustrative set of amplitudes at tree level we provide is in the context of tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.