40 resultados para Bacteriophage T4

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There was no difference in the incorporation of S-35 label into proteins of T4 and amber B17 phage grown on Escherichia coli B. The head protein peak was absent in the polyacrylamide gel electrophoretic profile of the S-35 labeled proteins of amber B17 grown on non-permissive host, E.coli B. However, an increase of 15–70% in the synthesis of other phage proteins of amber B17 over that of T4 phage was observed. The lysozyme activity increased by two fold in amber B17 in comparison with that of T4 phage grown on E.coli B. These results imply that in the absence of head protein synthesis by amber mutant there was an increase in the synthesis of other phage proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protective effect of bacteriophage was assessed against experimental Staphylococcus aureus lethal bacteremia in streptozotocin (STZ) induced-diabetic and non-diabetic mice. Intraperitoneal administrations of S. aureus (RCS21) of 2 x 10(8) CFU caused lethal bacteremia in both diabetic and non-diabetic mice. A single administration of a newly isolated lytic phage strain (GRCS) significantly protected diabetic and nondiabetic mice from lethal bacteremia (survival rate 90% and 100% for diabetic and non-diabetic bacteremic groups versus 0% for saline-treated groups). Comparison of phage therapy to oxacillin treatment showed a significant decrease in RCS21 of 5 and 3 log units in diabetic and nondiabetic bacteremic mice, respectively. The same protection efficiency of phage GRCS was attained even when the treatment was delayed up to 4 h in both diabetic and non-diabetic bacteremic mice. Inoculation of mice with a high dose (10(10) PFU) of phage GRCS alone produced no adverse effects attributable to the phage per se. These results suggest that phages could constitute valuable prophylaxis against S. aureus infections, especially in immunocompromised patients. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4 A electron-density map of Pf1 filamentous bacterial virus has been calculated from x-ray fiber diffraction data by using the maximum-entropy method. This method produces a map that is free of features due to noise in the data and enables incomplete isomorphous-derivative phase information to be supplemented by information about the nature of the solution. The map shows gently curved (banana-shaped) rods of density about 70 A long, oriented roughly parallel to the virion axis but slewing by about 1/6th turn while running from a radius of 28 A to one of 13 A. Within these rods, there is a helical periodicity with a pitch of 5 to 6 A. We interpret these rods to be the helical subunits of the virion. The position of strongly diffracted intensity on the x-ray fiber pattern shows that the basic helix of the virion is right handed and that neighboring nearly parallel protein helices cross one another in an unusual negative sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the (sic) subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at P-mom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at P-lys, P-I, and P-P is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transformation is suggested which can transform a non-Gaussian monthly hydrological time series into a Gaussian one. The suggested approach is verified with data of ten Indian rainfall time series. Incidentally, it is observed that once the deterministic trends are removed, the transformation leads to an uncorrelated process for monthly rainfall. The procedure for normalization is general enough in that it should be also applicable to river discharges. This is verified to a limited extent by considering data of two Indian river discharges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.