5 resultados para Bactériologie et cytologie utérine
em Indian Institute of Science - Bangalore - Índia
Resumo:
Some tetra substituted furans and thiophenes were reacted with methyl acrylate under BF3-etherate catalysed Diels-Alder conditions. While the derivatives of furan underwent Diels-Alder reaction in a facile manner, an observation of 2,5-dimethyl-3,4-dianisylthiophene undergoing Diels-Alder reaction with methyl acrylate is remarkable. (C) 1997, Elsevier Science Ltd.
Resumo:
The reaction of Pd{kappa(2)(C,N)-C6H3Me-3-(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (Ar = 2-MeC6H4; 1) with 4 equiv of PhC C-C(O)OMe in CH2Cl2 afforded Pd{kappa(2)(C,N)-C(Ph)=C(C(O)OMe)C(Ph)=C(C(O)-OMe)C6H3Me-3(N=C(NH Ar)(2))-2}Br] (Ar = 2-MeC6H4; 2) in 70% yield, and the aforementioned reaction carried out with 10 equiv of PhC C-C(O)OR (R = Me, and Et) afforded an admixture of two regioisomers of Pd{kappa(3)(N,C,O)-O=C(OR)-C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)( 2))- 2}Br] (Ar = 2-MeC6H4; R = Me (3a/3b), Et (4a/4b)) in 80 and 87% yields, respectively. In one attempt, the minor regioisomer, 4b, was isolated from the mixture in 6% yield by fractional crystallization. Palladacycles 3a/3b and 4a/4b, upon stirring in CH2Cl2/MeCN (1/1, v/v) mixture at ambient condition for S days, afforded Pd{eta(3)-allyl,(KN)-N-1)-C-5(C(O)OR)(2)Ph3C-(C(O)OR)C6H3Me-3(N=C(NH Ar)(2))(-2)}Br] (Ar = 2-MeC6H4; R = Me (5a/5b), Et (6a/6b)) in 94 and 93% yields, respectively. Palladacycles 3a/3b and 4a/4b, upon reaction with AgOTf in CH2CH2/Me2C(O) (1/1, v/v) mixture at ambient temperature for 15 min, afforded Pd{kappa(3)(N,C,O)-O=C(OR)C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)(2 ))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (7a/7b), Et (8a/8b)) in 79 and 77% yields, respectively. Palladacycles 7a/7b and 8a/ 8b, upon reflux in PhC1 separately for 6 h, or palladacycles 5a/5b and 6a/6b, upon treatment with AgOTf in CH2Cl2/Me2C(O) (7/3, v/v) mixture for 15 min, afforded Pd{(eta(2)-Ph)C5Ph2(C(O)OR)kappa(2)(C,N)-C(C(O)OR)C6H3Me-3(N=C(NHAr) (2))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (9a/9h), Et (10a/10b)) in >= 87% yields. Palladacycles 9a/9b, upon stirring in MeCN in the presence of excess NaOAc followed by crystallization of the reaction mixture in the same solvent, afforded Pd{kappa(3)(N,C,C)-(C6H4)C5Ph2(C(O)OMe)(2)C(C(O)OMe)(2)C6H3Me-3(N=C( NHAr)(2))-2}(NCMe)] (Ar = 2-MeC6H4; 11a/11b) in 82% yield. The new palladacycles were characterized by analytical, IR, and NMR (H-1 and C-13) spectroscopic techniques, and the molecular structures of 2, 3a, 4a, 4b, 5a, 6a, 7a, 9a, 10a, and 11a-d(3) were determined by single crystal X-ray diffraction. The frameworks in the aforementioned palladacycles, except that present in 2, are unprecedented. Plausible pathways for the formation of new palladacycles and the influence of the guanidine unit in 1, substituents in alkynes, reaction conditions, and electrophilicity of the bromide and the triflate upon the frameworks of the insertion products have been discussed.