71 resultados para BRST quantization
em Indian Institute of Science - Bangalore - Índia
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
We address the issue of complexity for vector quantization (VQ) of wide-band speech LSF (line spectrum frequency) parameters. The recently proposed switched split VQ (SSVQ) method provides better rate-distortion (R/D) performance than the traditional split VQ (SVQ) method, even at the requirement of lower computational complexity. but at the expense of much higher memory. We develop the two stage SVQ (TsSVQ) method, by which we gain both the memory and computational advantages and still retain good R/D performance. The proposed TsSVQ method uses a full dimensional quantizer in its first stage for exploiting all the higher dimensional coding advantages and then, uses an SVQ method for quantizing the residual vector in the second stage so as to reduce the complexity. We also develop a transform domain residual coding method in this two stage architecture such that it further reduces the computational complexity. To design an effective residual codebook in the second stage, variance normalization of Voronoi regions is carried out which leads to the design of two new methods, referred to as normalized two stage SVQ (NTsSVQ) and normalized two stage transform domain SVQ (NTsTrSVQ). These two new methods have complimentary strengths and hence, they are combined in a switched VQ mode which leads to the further improvement in R/D performance, but retaining the low complexity requirement. We evaluate the performances of new methods for wide-band speech LSF parameter quantization and show their advantages over established SVQ and SSVQ methods.
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.
Resumo:
Abstract is not available.
Resumo:
The signal-to-noise (S/N) ratio in the reconstructed image from a binary hologram has been quantitatively related to the amplitude and phase quantization levels. The S/N ratio increases monotonically with increasing number of quantization levels. This observation is further supported by experimental results.
Resumo:
It is shown that the use of a coarsely quantized binary digital hologram as a matched filter on an optical computer does not degrade signal-to-noise ratio (SNR) appreciably.
Resumo:
We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.
Resumo:
We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.
Resumo:
Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.
Resumo:
We address the issue of rate-distortion (R/D) performance optimality of the recently proposed switched split vector quantization (SSVQ) method. The distribution of the source is modeled using Gaussian mixture density and thus, the non-parametric SSVQ is analyzed in a parametric model based framework for achieving optimum R/D performance. Using high rate quantization theory, we derive the optimum bit allocation formulae for the intra-cluster split vector quantizer (SVQ) and the inter-cluster switching. For the wide-band speech line spectrum frequency (LSF) parameter quantization, it is shown that the Gaussian mixture model (GMM) based parametric SSVQ method provides 1 bit/vector advantage over the non-parametric SSVQ method.
Resumo:
We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.
Resumo:
In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as ``quantization threshold'') that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studiedfor the current-biased negative differential resistance (NDR) circuitand hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.
Resumo:
A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.
Resumo:
In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.